Supplementary material

Novel zinc(II) metal-organic framework with diamond-like structure: synthesis, study of thermal robustness and gas adsorption properties

Miroslav Almáši^a, Vladimír Zeleňák^{*,a}, Arnošt Zukal^b, Juraj Kuchár^a, Jiří Čejka^b

^aDepartment of Inorganic Chemistry, Faculty of Science, Pavol Jozef Šafárik University, Moyzesova 11, 041 54 Košice, Slovak Republic
^bDepartment of Synthesis and Catalysis, J. Heyrovský Institute of Physical Chemistry of the ASCR, v.v.i., Academy of Sciences of the Czech Republic, Dolejškova 2155/3, 128 23 Prague, Czech Republic
*corresponding author; e-mail: vladimir.zelenak@upjs.sk

Fig. S1 Optical microscopy images of crystals of compound **1** stored in Formblin[®] oil: a) 4 x zoom, b) 10 x zoom.

Table	S1	Crystal	data	and	structure	refinement	summary	for	complex	${[Zn_2(\mu_4-$
$MTB)(\kappa^{4}-CYC)_{2}]\cdot 2DMF\cdot 7H_{2}O\}_{n}.$										

Formula	${[Zn_2(\mu_4-MTB)(\kappa^4-$	Monochromator	graphite	
	$CYC)_2]\cdot 2DMF\cdot 7H_2O_n$			
Empirical formula	$Zn_2C_{55}H_{92}N_{10}O_{17}$	Θ range (°)	3.121-26.49	
Formula weight	1296	Reflections measured	12 383	
		Independent reflections	3792	
Crystal parameters		Reflections observed [#]	1733	
Crystal shape	needle	Linear abs. coeff. (mm ⁻¹)	0.720	
Crystal colour	colourless	F(000)	1376	
Crystal size (mm)	0.5 x 0.1 x 0.1	Reflections for cell	23353 with 3.223< θ	
		measure.	<26.24	
Crystal system	tetragonal	h	-21 to 21	
Space group (number)	<i>P4/n</i> (85)	k	-21 to 14	
Unit cell dimensions		l	-10 to 15	
<i>a</i> (Å)	17.1627 (10)			
<i>c</i> (Å)	12.407 (2)	Refinement		
V_c (Å ³)	3654.6 (7)	Refinement method	full matrix least-	
			squares on F^2	
Molecules per cell, Z	2	Parameters	153	
D_x (g.cm ⁻³)	1.178	Goodness-of-fit on F^2	0.947	
		R _{int.}	0.114	
Meas. of intensity		R_1 (observed/all)	0.0639 / 0.1310	
data				
Instrument	Xcalibur2	wR_2 (observed/all)*	0.1647 / 0.2013	
Temperature (°C)	-100 (2)	Max. and min. height in	0.413 and -0.554	
		final diff. synthesis (e.Å-3)		
Radiation λ (Å)	0.71073			

[#] [I > $2\sigma(I)$], * w = $1/[\sigma^2(F_o^2) + (0.1463P)^2]$ where $P = (F_o^2 + 2F_c^2)/3$.

Bond distances			
Zn-N1 ⁱ	2.125 (4)	C2–C3	1.486 (8)
Zn-N1	2.125 (4)	C4–C5 ⁱ	1.516 (8)
Zn-N2 ⁱ	2.089 (4)	С6-С7	1.564 (7)
Zn-N2	2.089 (4)	С7–С8	1.361 (6)
Zn-O1 ⁱ	2.195 (3)	C7–C12	1.379 (6)
Zn-O1	2.195 (3)	C8–C9	1.390 (6)
O1–C6	1.223 (5)	C9–C10	1.392 (6)
O2–C6	1.207 (6)	C10-C11	1.389 (6)
N1C1	1.452 (7)	C11–C12	1.406 (6)
N1-C5	1.488 (7)	C10–C13	1.552 (4)
N2-C3	1.470 (6)	C10 ⁱⁱ –C13	1.552 (4)
N2-C4	1.442 (7)	C10 ⁱⁱⁱ –C13	1.552 (4)
C1–C2	1.542 (9)	C10 ^{iv} –C13	1.552 (4)
Bond angles			
N1–Zn–N2	94.51 (18)	O1–C6–C7	114.9 (4)
N1-Zn-N2 ⁱ	85.49 (18)	O2–C6–C7	116.2 (5)
N1 ⁱ –Zn–N2	85.49 (18)	C1-N1-C5	115.2 (4)
$N1^i$ – Zn – $N2^i$	94.50 (18)	C4-N2-C3	115.3 (4)
N2-Zn-N2 ⁱ	180.0	C1C2C3	117.8 (5)
N1–Zn–O1	88.24 (15)	С6-С7-С8	119.7 (4)
N1 ⁱ –Zn–O1	91.76 (15)	C6-C7-C12	121.4 (4)
N1 ⁱ –Zn–O1 ⁱ	88.24 (15)	С7-С8-С9	120.8 (4)
N1–Zn–O1 ⁱ	91.76 (15)	C7-C12-C11	121.2 (4)
N2-Zn-O1	93.06 (14)	C8-C7-C12	118.9 (4)
N2 ⁱ -Zn-O1	86.94 (14)	N2-C4-C5 ⁱ	110.5 (4)
N2 ⁱ -Zn-O1 ⁱ	93.06 (14)	C8-C9-C10	121.4 (4)
N2–Zn–O1 ⁱ	86.94 (14)	C9-C10-C11	117.8 (4)
O1 ⁱ –Zn–O1	180.0 (2)	C9-C10-C13	119.0 (3)
Zn0106	131.0 (3)	C10-C11-C12	119.8 (4)
Zn-N1-C1	114.9 (4)	C10-C13-C10 ⁱⁱ	110.97 (15)
Zn-N1-C5	103.4 (3)	C10-C13-C10 ⁱⁱⁱ	110.97 (15)
Zn-N2-C4	105.8 (3)	C10 ⁱⁱ –C13–C10 ⁱⁱⁱ	106.5 (3)
Zn-N2-C3	115.2 (3)	C10-C13-C10 ^{iv}	106.5 (3)
N1C1C2	110.9 (5)	C10 ⁱⁱ –C13–C10 ^{iv}	110.97 (15)
$N1-C5-C4^{i}$	110.3 (4)	C10 ⁱⁱⁱ –C13–C10 ^{iv}	110.97 (15)
N2-C3-C2	113.2 (5)	C11-C10-C13	123.1 (3)

Table S2 Selected bond distances (Å) and angles (°) in the crystal structure of $\{[Zn_2(\mu_4-MTB)(\kappa^4-CYC)_2]:2DMF:7H_2O\}_n$.

Symmetry codes: (i) -x, -y, -z; (ii) x+1/2, -y, -z+1; (iii) -x, y-1/2, -z+1; (iv) -x-1/2,

-y+1/2, z.

Fig. S2 FT-IR spectra of free ligands methanetetrabenoic acid (green line), cyclam (black line) and complex **1** (red line).

FT-IR spectrum of compound **1** measured at room temperature (Fig. S2) exhibits a broad absorption band centred at 3374 cm⁻¹ corresponding to stretching vibration of clathrated water molecules ($v(OH)_{water}$). The presence of cyclam molecules in compound **1** is evident from two medium intensive bands located at 3258 and 3167 cm⁻¹ corresponding to antisymmetric and symmetric stretching vibrations of N-H groups. Similarly, the stretching vibrations of CH₂ groups, $v_{as}(CH)_{aliph}$ and $v_s(CH)_{aliph}$ are present at 2923 and 2860 cm⁻¹, respectively. Very weak absorption bands observed in the range of 3080-3030 cm⁻¹ are assigned to C-H aromatic stretching vibrations of MTB⁴⁻ molecules. FT-IR spectrum exhibits very strong and sharp band at 1666 cm⁻¹ corresponding to stretching vibration of v(C=O), which can be attributed to DMF molecules. The evident presence of MTB⁴⁻ ligand in compound **1** is reflected by the carboxylate vibrations, which dominate the IR spectra. The lack of strong absorption band at 1694 cm⁻¹ (corresponding to v(C=O) vibration of carboxylic group of the free H₄MTB, see Table S2 and Fig. S2) indicates that all carboxyl groups of H₄MTB molecule were completely deprotonated during the synthesis.

The band of antisymmetric carboxylate stretch, $v_{as}(\text{COO}^-)$, was found at 1546 cm⁻¹, the band of symmetric $v_s(\text{COO}^-)$ stretch was found at 1376 cm⁻¹ and the band of deformation $\delta(\text{COO}^-)$ was observed at 775 cm⁻¹, respectively. The frequencies of carboxylate stretching vibrations and the magnitude of their separation, $\Delta = v_{as}(\text{COO}^-)$ - $v_s(\text{COO}^-)$, are often used as a spectroscopic criterion to determine the coordination mode of carboxylate group. Consequently, the calculated value of separation between the antisymmetric and symmetric COO⁻ stretches was 170 cm⁻¹. The separation value is in a good agreement with coordination mode of the carboxylate group found in compound **1** (monodentate).

Table S3 Assignment of IR spectral data of complex 1, methanetetrabenzoic acid (H_4MTB) and cyclam (CYC) (band positions are in cm⁻¹).

	compound 1	methanetetrabenzoic	cyclam (CYC)
v(OH) _{water}	3374 (m, br)	-	-
v(NH)	3258 (m), 3169 (m)	-	3261 (m), 3181
v(CH) _{ar}	3077 (vw), 3061	3064 (w)	-
	(vw),		
v _s (CH) _{aliph}	2923 (m)	-	2921 (m)
vas(CH)aliph	2860 (m)	-	2864 (m)
<i>v</i> (C=O)	1666 (s)	1694 (vs)	-
v(C=C) _{ar}	1592 (s), 1502 (w)	1604 (s), 1574 (m), 1507 (w)	-
$v_{as}(COO^{-})$	1546 (s)	-	-
δ (C-O) +	-	1414(s), 1246(vs)	
$v_s(COU)$	1376 (vs)	-	-
$\delta(\text{CCH})_{\text{ar}}$	1185 (w), 1097 (s), 1016 (m)	1189 (s), 1124 (m), 1017 (w)	-
γ(CCH) _{ar}	-	761 (s), 784 (vs)	-

 $\delta(\text{COO}^-)$ 775 (s)

(band intensity: vs – very strong, s – strong, m – medium, w – weak, vw – very weak, type of vibration: ar – aromatic, aliph – aliphatic, s – symmetric, as – antisymmetric).

Fig. S3 HE-PXRD patterns of **1** a) calculated from the single crystal X-ray data (red line), b) as synthesized sample (black line) and c) after adsorption measurements (green line) (sample **1**').

Fig. S4 a) Adsorption isosteres of CO₂. Points were calculated by numerical interpolation/extrapolation of adsorption isotherms, lines represent linear fit. All the isosteres are marked with corresponding amount adsorbed in cm³.g⁻¹ at STP. b) Isosteric heats of adsorption of carbon dioxide on $\{[Zn_2(\mu_4-MTB)(\kappa^4-CYC)_2]\}_n$.

Fig. S5 a) Adsorption isosteres of hydrogen. All the isotheres are marked with corresponding amount adsorbed in $\text{cm}^3.\text{g}^{-1}$ at STP c) Coverage dependence of the isosteric heat of adsorption for hydrogen in 1' calculated from the interpolation/extrapolation of the corresponding isotherms.