Electronic Supplementary Information

Grafting transition metal-organophosphonate fragments onto

heteropolyoxomolybdate: activity in photocatalysis

Xiaopeng Sun, Zhijie Liang, Pengtao Ma, Ran Ban, Mingshuang Jiang, Dongdi Zhang,* Jingping Wang and Jingyang Niu*

Henan Key Laboratory of Polyoxometalate Chemistry,
Institute of Molecular and Crystal Engineering,
College of Chemistry and Chemical Engineering,
Henan University, Kaifeng 475004, Henan, China,
E-mail: ddzhang@henu.edu.cn, jyniu@henu.edu.cn; Fax: (+86)371-23886876.

CONTENTS

- Section 1. IR spectra of 1 and H_3L
- Section2. The comparison of experimental XRPD pattern and simulated of 1
- Section3. The synthetic pathway of 1
- Section4. Thermogravimetric analyses of **1**
- Section5. Bond valence sum calculations of Mo, Ni, P and O atoms on POM fragments in 1
- Section6. Crystallographic data of 1
- Section7. Selected bond angles (°) of 1
- Section8. Some structural figures
- Section9. Additional photocatalysis related table and figure

Section 1. IR spectra of 1 and H_3L

Section2. The comparison of experimental XRPD pattern and simulated of 1

Fig. S2 The comparison of experimental XRPD patterns (blue) and simulated (black) of 1

Section3. The synthetic pathway of ${\bf 1}$

Fig. S3 The synthetic pathway of compound 1 with stirring approximately 2h at 80 °C

Section4. Thermogravimetric analyses of 1

Section5. Bond valence sum calculations of Mo, Ni, P and O atoms on POM fragments in 1

Fig. S5 The representation of Mo, Ni, P atoms (a), and O atoms (b) labeling in polyanion 1a Symmetry code; A: 2–x, y, 0.5–z.

Bond	Bond length	Bond Valence	Valence Sum
Mo(1)-O(1)	1.710	1.703	
Mo(1)-O(2)	1.714	1.685	
Mo(1)-O(5)	1.913	0.984	$\Sigma(Mo1) = 6.015$
Mo(1)-O(3)	1.926	0.950	
Mo(1)-O(4)	2.267	0.378	
Mo(1)-O(6)	2.334	0.315	
Mo(2)-O(7)	1.713	1.689	
Mo(2)-O(8)	1.714	1.685	
Mo(2)-O(9)	1.914	0.981	$\Sigma(Mo2) = 6.024$
Mo(2)-O(5)	1.938	0.920	
Mo(2)-O(10)	2.222	0.427	1

Table S1 Bond valence sum parameters for Mo atoms on POM fragments in 1

Mo(2)-O(6)	2.326	0.322	
Mo(3)-O(12)	1.705	1.726	
Mo(3)-O(11)	1.716	1.676	
Mo(3)-O(9)	1.907	1.000	$\Sigma(Mo3) = 6.051$
Mo(3)-O(13)	1.944	0.905	
Mo(3)-O(14)	2.223	0.426	
Mo(3)-O(15)	2.330	0.319	
Mo(4)-O(16)	1.700	1.750	
Mo(4)-O(17)	1.710	1.703	
Mo(4)-O(13)	1.879	1.079	$\Sigma(Mo4) = 6.037$
Mo(4)-O(18)	1.952	0.885	
Mo(4)-O(15)	2.318	0.329	
Mo(4)-O(19)	2.364	0.291	
Mo(5)-O(21)	1.694	1.778	
Mo(5)-O(20)	1.704	1.731	
Mo(5)-O(22)	1.887	1.056	$\Sigma(Mo5) = 6.108$
Mo(5)-O(18)	1.959	0.869	
Mo(5)-O(24)	2.270	0.375	
Mo(5)-O(23)	2.353	0.300	
Mo(6)-O(25)	1.707	1.717	
Mo(6)-O(26)	1.714	1.685	
Mo(6)-O(3)	1.902	1.013	$\Sigma(Mo6) = 6.041$
Mo(6)-O(22)	1.948	0.895	
Mo(6)-O(27)	2.225	0.423	
Mo(6)-O(24)	2.344	0.307	

Bond valence sum parameters for Mo(1A), Mo(2A), Mo(3A), Mo(4A), Mo(5A) and Mo(6A) are the same as Mo(1), Mo(2), Mo(3), Mo(4), Mo(5) and Mo(6), so they are omitted.

Table S2 Bond valence sum parameters for Ni atoms on POM fragments in 1

Bond	Bond length	Bond Valence	Valence Sum
Ni(1)-O(32)	2.048	0.345	
Ni(1)-O(36A)	2.054	0.339	
Ni(1)-O(31A)	2.088	0.309	$\Sigma(Ni1) = 2.029$
Ni(1)-O(29)	2.092	0.306	
Ni(1)-N(1)	2.106	0.382	
Ni(1)-N(3A)	2.141	0.348	
Ni(2)-O(34)	2.030	0.362	
Ni(2)-O(34A)	2.030	0.362	
Ni(2)-O(30)	2.081	0.315	$\Sigma(Ni2) = 2.128$
Ni(2)-O(30A)	2.080	0.316	
Ni(2)-N(2A)	2.102	0.386	
Ni(2)-N(2)	2.102	0.386	
Ni(3)-O(38A)	2.024	0.368	

Ni(3)-O(38)	2.024	0.368	
Ni(3)-O(30A)	2.054	0.339	$\Sigma(Ni3) = 1.952$
Ni(3)-O(30)	2.054	0.339	
Ni(3)-O(39A)	2.140	0.269	
Ni(3)-O(39)	2.140	0.269	
Ni(4)-O(23A)	2.034	0.358	
Ni(4)-O(19A)	2.036	0.356	
Ni(4)-O(18A)	2.057	0.336	$\Sigma(Ni4) = 1.958$
Ni(4)-O(40)	2.084	0.313	
Ni(4)-O(28A)	2.101	0.299	
Ni(4)-O(39)	2.105	0.296	

Bond valence sum parameters for Ni(1A) and Ni(4A) are the same as Ni(1) and Ni(4), so they are omitted.

Bond	Bond length	Bond Valence	Valence Sum
P(1)-O(28)	1.520	1.300	
P(1)-O(6)	1.542	1.225	$\Sigma(P1) = 4.918$
P(1)-O(15)	1.550	1.199	
P(1)-O(24)	1.551	1.195	
P(2)-O(4)	1.526	1.279	
P(2)-O(10)	1.527	1.275	$\Sigma(P2) = 2.658$
P(2)-O(29)	1.535	1.248	
P(2)-C(1)	1.800	1.145	
P(3)-O(14)	1.517	1.310	
P(3)-O(30)	1.524	1.286	$\Sigma(P3) = 2.736$
P(3)-O(19)	1.535	1.248	
P(3)-C(4)	1.812	1.108	
P(4)-O(27)	1.512	1.328	
P(4)-O(31)	1.526	1.279	$\Sigma(P4) = 2.720$
P(4)-O(23)	1.535	1.248	
P(4)-C(7)	1.803	1.135	

Table S3 Bond valence sum parameters for P atoms on POM fragments in 1

Bond valence sum parameters for P(1A), P(2A), P(3A) and P(4A) are the same as P(1), P(2), P(3) and P(4), so they are omitted.

Table S4 Bond valence sum parameters for O atoms on POM fragments in 1

Atom	Valence Sum	Atom	Valence Sum	
01	1.703	O21	1.778	
O2	O2 1.685 O22		1.951	
O3	1.964	O23	1.906	
O4	1.657	O24	1.877	
O5	1.904	O25	1.717	
O6	1.862	O26	1.685	
07	1.689	O27	1.752	

08	1.685	O28	1.598
09	1.981	O29	1.554
O10	1.702	O30	1.940
011	1.676	O31	1.588
012	1.726	O32	1.861
O13	1.983	O33	1.575
O14	1.736	O34	1.712
O15	1.847	O35	1.429
O16	1.750	O36	1.715
O17	1.703	O37	1.541
O18	2.091	O38	0.368
019	1.895	O39	0.564
O20	1.731	O40	0.313

 $\Sigma(O38) = 0.368 \rightarrow OH2 \Sigma(O39) = 0.564 \rightarrow OH2 \Sigma(O40) = 0.313 \rightarrow OH2;$

Bond valence sum parameters for O(1A), O(2A), O(3A)....O(40A) are the same as O(1), O(2), O(3)...O(40), so they are omitted.

Section6. Crystallographic data for 1

.

Table S5 Crystallographic data for 1				
Empirical formula	C ₁₈ H ₈₆ CsMo ₁₂ N ₆ Na ₉ Ni ₆ O ₁₀₁ P ₈			
Formula weight	4094.04			
T [K]	296.15			
Space group	C2/c			
Crystal system	Monoclinic			
<i>a</i> [Å]	14.8247(8)			
<i>b</i> [Å]	45.237(2)			
<i>c</i> [Å]	18.8324 (9)			
β[°]	103.371(10)			
V [Å ³]	12287.1(11)			
Ζ	4			
Crystal size [mm ³]	0.50 x 0.18 x 0.17			
$\rho_{calc} \left[g \ cm^{-3}\right]$	2.213			
$\mu [\mathrm{mm}^{-1}]$	2.617			
F(000)	7960.0			
Limiting indices	$-17 \le h \le 17$			
	$-45 \le k \le 53$			
	$-22 \le l \le 22$			
2Θ for data collection [°]	2.964 - 49.998			
Reflections collected / unique	31456 / 10802			
R _{int}	0.0274			
Goodness-of-fit on F ²	1.048			
Final <i>R</i> indices $[I \ge 2\sigma(I)]^a$	$R_1 = 0.0439$ $wR_2 = 0.1332$			
Final <i>R</i> indices (all data) ^b	$R_1 = 0.0554$ $wR_2 = 0.1445$			
Note: ${}^{a}P = \sum E = E / \sum E : b_{ab}P = [\sum w(E 2 - E 2) / \sum w(E 2) / 211 / 2$				

Note: ${}^{a}R_{1} = \sum ||F_{o}| - |F_{c}|| / \sum |F_{o}|; {}^{b}wR_{2} = [\sum w(F_{o}^{2} - F_{c}^{2})^{2} / \sum w(F_{o}^{2})^{2}]^{1/2}$

Section7. Selected bond angles (°) of 1

O(1)-Mo(1)-O(2)	103.8(3)	O(1)-Mo(1)-O(4)	166.2(2)	O(5)-Mo(1)-O(6)	73.85(18)
O(7)-Mo(2)-O(8)	103.8(3)	O(7)-Mo(2)-O(6)	166.0(2)	O(5)-Mo(2)-O(6)	73.6(18)
O(12)-Mo(3)-O(11)	102.9(3)	O(12)-Mo(3)-O(14)	167.3(3)	O(13)-Mo(3)-O(15)	72.65(18)
O(16)-Mo(4)-O(17)	103.9(3)	O(16)-Mo(4)-O(15)	166.4(2)	O(18)-Mo(4)-O(19)	74.75(17)
O(21)-Mo(5)-O(20)	102.5(3)	O(20)-Mo(5)-O(24)	166.1(2)	O(18)-Mo(5)-O(23)	74.21(17)
O(25)-Mo(6)-O(3)	102.8(3)	O(26)-Mo(6)-O(27)	167.7(2)	O(22)-Mo(6)-O(24)	72.09(18)
O(32)-Ni(1)-O(29)	92.41(19)	O(32)-Ni(1)-N(1)	82.1(2)	O(29)-Ni(1)-N(1)	87.5(2)
O(34)-Ni(2)-O(30)	95.5(2)	O(34)-Ni(2)-N(2)	81.7(2)	O(30)-Ni(2)-N(2)	88.8(2)
O(38)-Ni(3)-O(30)	166.8(2)	O(38)-Ni(3)-O(39)	87.32(19)	O(30)-Ni(3)-O(39)	100.92(18)
O(40)-Ni(4)-O(39)	87.3(2)	O(19A)-Ni(4)-O(39)	101.52(18)	O(18A)-Ni(4)-O(39)	176.17(19)

Table S6 Selected bond angles (°) of 1

Section8. Some structural figures

Fig. S6 (a) Polyhedral / ball-and-stick representation of $\{(PMo_6O_{22})_2(NiL_2)_3\}$ (L = OOCCH₂NHCH₂PO₃); (b) The structure representation of $\{Mo_6\}$ plane

Fig. S7 (a) The normative isosceles triangle constructed by Ni1, Ni1A and Ni2 atoms; (b) The Ni4–Ni3–Ni4A line with the angle of 174.96°

Fig. S8 (a) The dihedral plane angle 56.12° of the two planes formed by Ni1, Ni2, Ni1A and Ni3, Ni4, Ni4A; (b) The nearly paralleled planes between P2, P3, P4 and P2A, P3A, P4A with the dihedral plane angle 0.10°

Fig. S9 (a) The 1D double-chain structure formed from {Na₄O₁₆} bridge; (b) One branch structure of the 1D double-chain. Color code: {MoO₆}: grey octahedral; {NiO₄N₂}: green octahedral; {NiO₆}: sky blue octahedral;
P: pink ball; N: blue ball; C: yellow ball; O: red ball; Na: teal ball; The H atoms are omitted for clarity.

Fig. S10 Absorption spectra of the Rhodamine B (RhB) aqueous solutions $(2.0 \times 10^{-5} \text{ mol L}^{-1})$ during the photodegradation under 500 W Xe-lamp irradiation in the presence of 1 with 0 (a); 6.4×10^{-7} (b); 1.28×10^{-6} (c); 2.56×10^{-6} (d); 3.84×10^{-6} (e); 5.12×10^{-6} (f); 1.02×10^{-5} (g) and 2.05×10^{-5} mol (h).

The usage amount of 1 (10 ⁻⁶ mol)	0	0.64	1.28	2.56
Degradation rate (%)	3.14	5.15	49.91	63.20
The usage amount of 1 (10 ⁻⁶ mol)	3.84	5.12	10.2	20.5
Degradation rate (%)	65.52	67.41	58.01	33.15

Table S7 The photocatalytic degradation rates for RhB aqueous solutions of ${\bf 1}$