Electronic Supplementary Material (ESI) for Dalton Transactions. This journal is © The Royal Society of Chemistry 2015

Supplementary Material

Table S1. Simulation results of $[Y(H_2O)_8]^{3+}$ clusters in the gas phase and similar clusters with a polarizable continuum (PC): Symmetry of the clusters, number of negative frequencies, geometrical parameters of the clusters, the electronic energies calculated. The data for the v₁ Y-O breathing mode is also given for these DFT clusters.

Level of theory / basis set	symmetry	negative frequencies	$v_{l}/ \text{ cm}^{-1}$ *	Y-O / Å	O-H / Å	Н-О-Н / °	energy in hartree
gas phase cluster							
B3LYP/LANL2DZ	C2	none	336.6	2.399	0.981	109.6	-648.698328
B3LYP/LANL2DZ	S8	none	336.5	2.399	0.981	109.6	-648.698322
B3LYP/LANL2DZ	D4	1	(334.2)	2.409	0.981	109.1	-648.688320
B3LYP/LANL2DZ/6-31G	C2	none	338.3	2.396	0.979	109.6	-648.511648
B3LYP/LANL2DZ/6-31G(d)	C2	none	328.4	2.408	0.977	106.0	-648.591925
B3LYP/LANL2DZ/6-1G+(d,p)	C2	none	338.3	2.396	0.978	109.6	-648.511648
B3LYP/LANL2DZ/D95+*	C2	none	334.0	2.414	0.978	105.9	-648.799550
B3LYP/LANL2DZ/D95**	C2	none	324.7	2.413	0.975	105.9	-648.848420
B3LYP/LANL2DZ/D95+**	C2	none	331.8	2.416	0.975	105.7	-648.864907
Cluster with PCM							
B3LYP/LANL2DZ	S8	none	372.1	2.354	0.989	110.9	-649.355492
B3LYP/LANL2DZ/6-31G+(d,p)	C2	-	no result	-	-	-	-
B3LYP/LANL2DZ/6-31G	C2	-	no result	-	-	-	-

• Remark: For the $[Y(H_2O)_8]^{3+}$ cluster with its 25 atoms 3 x 25 - 6 = 69 normal modes are expected with the irreducible representation of the normal modes: $\Gamma_v(S_8) = 8a(Ra) + 9b(i.r.) + 18e_1(i.r.) + 18e_2(Ra) + 16e_3(Ra)$. The mode v_1 is the totally symmetric Y-O mode, the so called breathing mode.

Table S2. Simulation results of a $[Y(H_2O)_6]^{3+}$ gas phase cluster and a similar clusters with a polarizable continuum (PCM). The symmetry of the cluster is T_h in both states. Given are frequency for the v_1 Y-O breathing, the geometrical parameters of the cluster and the calculated electronic energy.

Level of theory / basis set	$v_1/ \text{ cm}^{-1}$ *	Y-O /Å	O-H /Å	Н-О-Н ∕°	Energy in hartree
B3LYP/LANL2DZ	376.5	2.322	0.986	107.8	-495.741633
B3LYP/LANL2DZ	407.5	2.285	0.986	109.4	-496.332300
+ PCM					

• The mode v_1 is the totally symmetric mode of Y-O (breathing mode).

Table S3: DFT frequencies at the B3LYP/ LANL2DZ level of theory for $[Y(H_2O)_8]^{3+}$ with a solvation shell (PC model). The irreducible representation of vibrations leads to $\Gamma_v(S_8) = 8a$ (Ra) + 9b (i.r.) + 18e₁ (Ra, i.r.) + 18e₂ (Ra) + 16e₃ (Ra).

peak position	sym-	assignment	peak position	sym-	assignment
cm ⁻¹	metry		cm ⁻¹	metry	
27.1	e ₂	δ ΥΟ ₈	425.8	e ₁	ω H ₂ O
101.1	b	δ ΥΟ ₈	523.0	b	ρΗ2Ο
109.3	e ₁	δ ΥΟ ₈	538.6	a	ρΗ2Ο
136.4	b	δ ΥΟ ₈	566.0	e ₁	ρH ₂ O
141.1	a	δ ΥΟ ₈	566.2	e ₃	ρ Η2Ο
154.8	e ₁	δ ΥΟ ₈	594.7	e ₂	ρΗ2Ο
154.9	e ₃	δ ΥΟ ₈	1570.3	e ₂	δH ₂ O
163.0	e ₂	δ ΥΟ ₈	1575.3	e ₃	δ Η ₂ Ο
215.5	e ₂	τ H ₂ O	1580.0	e ₁	δH ₂ O
250.0	e ₁	τ Η ₂ Ο	1581.2	b	δ Η ₂ Ο
278.8	e ₃	τ H ₂ O	1589.6	a	δH ₂ O
283.6	e ₂	v YO ₈	3453.4	e ₂	v _s H ₂ O
301.3	e ₃	v YO ₈ , τ H ₂ O	3454.0	e ₃	$v_{s}H_{2}O$
314.7	a	τH ₂ O	3456.9	b	$v_{s}H_{2}O$
336.7	b	ν YO₈, ω H ₂ O	3459.6	e ₁	$v_{s}H_{2}O$
348.5	e ₁	ν YO₈, ω H ₂ O	3476.5	a	v _s H ₂ O
367.0	b	$\tau H_2O, \omega H_2O$	3548.1	a	$v_{as} H_2 O$
372.1	a	v _s YO ₈	3548.3	e ₁	$v_{as} H_2 O$
375.7	e ₃	ω H ₂ O	3548.3	e ₃	$v_{as} H_2 O$
376.4	a	ω H ₂ O	3548.3	e ₂	$v_{as} H_2O$
384.8	b	ω H ₂ O	3548.5	b	$v_{as} H_2 O$
397.6	e ₂	ω H ₂ O			

Note, that the skeletal vibrations are written in bold type letters, with the breathing vibrational frequency of the cluster at 372.1cm⁻¹. Notations: v_{as} : antisymmetric stretch, v_s : symmetric stretch, δ : deformation; H₂O librations: ρ : rocking, ω : wagging, τ : twisting

	assignment				
peak	Ai	fwhh /cm ⁻¹	depol.	symmetr	
position/cm ⁻¹			degree	у	
-	-	-	-	a ₂	torsion
212	0.97	18.1	0.65	e	τ_3 FC-SO ₃
319	40.81	12.85	0.25	a ₁	v C-S
351	21.30	14.7	0.70	e	τ_{3} FC-SO ₃
518.8	1.97	16.1	0.64	e	$\delta_{s} FCF + \delta_{s} SO_{3}$
577.9	14.61	17.7	0.74	e	δ_{as} FCF, δ_{as} OSO
640.5	0.78	25.9	0.240	a ₁	$\delta_{as} CF_3, \delta_{as} OSO$
764.5	48.05	8.45	0.0023	a ₁	$\delta_{s}CF_{3}, \delta_{s}SO_{3}$
1033.3	100	12.9	0.0097	a ₁	$v_s SO_3, v_s CF_3$
1182	2.33	27.8	0.71	e	$v_{as}CF_3$
1227.5	4.54	9.8	0.21	a ₁	v _s CF ₃
1254.5 *	2.38	46	0.63	e	v _{as} SO ₃
1281.8	15.79	33	0.70		

Table S4. Our Raman data and band assignments of CF₃SO₃-(aq) at 23 °C.

• This band appears as a double band; data from band fit procedure

Figure S1. Polarized and depolarized Raman scattering profiles of 0.256 mol·L⁻¹ Y(ClO₄)₃(aq) ($R_w = 211$). A. The inset shows the isotropic profile of the YO₈ breathing mode at 384 cm⁻¹ ($R_{iso} = R_{VV} - 4/3R_{VH}$).

Figure S2. The O-H stretching region of water from $2200 - 4200 \text{ cm}^{-1}$ for three aqueous $Y(ClO_4)_3$ solutions in comparison with neat liquid water. From bottom to top: (A) H₂O, (B) 0.390, (C) 0.76 and (D) 1.770 molL⁻¹ $Y(ClO_4)_3$. At the bottom (A) the O-H profile of water with its characteristic bands is shown and above (B-D) the profiles of $Y(ClO_4)_3$ (aq). With increasing solute concentration a mode at 3538 cm⁻¹ is dominating the O-H profiles. (D) The band component of water at 3235 cm⁻¹ is still observable while the component at 3405 cm⁻¹ is completely overlapped by the strong band, v O-H… ClO_4^- , at 3538 cm⁻¹ of weakly H-bonded water.

Figure S3. The O-H stretching region (HDO/D₂O; ca. 3% HDO) of a 2.300 mol L⁻¹ Y(ClO₄)₃ solution in D₂O from 3000 – 4000 cm⁻¹. The dominating O-H band at 3563 cm⁻¹ is due to the decoupled O-H oscillators, HDO/D₂O, weakly H-bonded to ClO₄⁻. In a concentrated Y(ClO₄)₃ solution the O-H····ClO₄⁻ band appears at 3538 cm⁻¹ (Figure S2).

Figure S4. The O-D stretching region of heavy water from $1400 - 3000 \text{ cm}^{-1}$ of a 2.300 mol L⁻¹ Y(ClO₄)₃ solution in D₂O. The dominating O-D band at 2583 cm⁻¹ is due to the O-D oscillators weakly D-bonded to ClO₄⁻. Only one band component of the heavy water at 2412 cm⁻¹ appears while the component which normally appears at 2500 cm⁻¹ is almost completely overlapped by the strong band at 2583 cm⁻¹.

Figure S5. The isotropic Raman spectrum of a 1.10 molL⁻¹ $Y(CF_3SO_3)_3$ solution in the wavenumber range from 212 - 460 cm⁻¹ and the sum curve of the fit. The inset shows the result of the difference spectrum of the $Y(CF_3SO_3)_3$ spectrum from which the spectrum of CF_3SO_3 -(aq) has been subtracted. The band at 384 cm⁻¹ is assigned to the YO_8 breathing mode.

Figure S6. Raman scattering profiles (polarized, depolarized and isotropic (darker line) scattering orientations) of four YCl₃ solutions. From bottom to top: (A) 0.479 molL⁻¹; (B) 0.803 mol·L⁻¹; (C) 1.01 molL⁻¹ and (D) 2.378 molL⁻¹. The bands of the solute water are the restricted translation and the librational bands at 183-194 cm⁻¹ and 703 – 671 cm⁻¹.

Figure S7. Raman scattering profiles (polarized, depolarized and isotropic (darker line) scattering orientations) of four YCl₃ solutions. From bottom to top: (A) 0.479 molL⁻¹; (B) 0.803 mol·L⁻¹; (C) 1.01 molL⁻¹ and (D) 2.378 molL⁻¹. Shown are the two water band components of the O-H stretching profile. The component bands for the O-H stretching profile of neat water are 3225 and 3405 cm⁻¹ and a shoulder at 3630 cm⁻¹. The peak positions shift slightly to higher wavenumbers and for the 2.378 molL⁻¹YCl₃ solution the band positions peak at 3220 cm⁻¹, 3425 cm⁻¹ and a small shoulder at 3595-3625 cm⁻¹.

Figure S8. Quantitative Raman results: Integrated band intensities of the $v_1 YO_8$ band versus stroichiometric concentration of four YCl₃ solutions (black squares) and the curve of the band intensity of $v_1 YO_8$ as a function of concentration in Y(ClO₄)₃(aq).

Figure S9. Raman spectra (R- format, all three scattering contributions): (A) a dilute solution at 0.198 mol·L⁻¹ Y(NO₃)₃ and (B) a concentrated solution at 2.035 mol·L⁻¹ in the frequency range from 40 - 900 cm⁻¹. Note the very weak band at 826 cm⁻¹ in panel (B) which is due to the normally infrared active mode, $v_2(a_2^{"})$.

Figure S10. Raman spectra (R- format, all three scattering contributions) of A) dilute $Y(NO_3)_3$ solution at 0.198 mol·L⁻¹ and B) of a 2.035 mol·L⁻¹ solution at from 800 – 1800 cm⁻¹. The insets show the symmetric N-O stretching band in more detail (isotropic scattering and anisotropic scattering).