Electronic Supplementary Material (ESI) for Dalton Transactions. This journal is © The Royal Society of Chemistry 2015

ESI for

Photostable ester-substituted bis-cyclometalated cationic iridium(III) complexes

for continuous monitoring oxygen

Chun Liu*, Hongcui Yu, Yang Xing, Zhanming Gao and Zilin Jin

[*] Dr. C. Liu, Corresponding Author
State Key Laboratory of Fine Chemicals, Dalian University of Technology, Linggong
Road 2, Dalian 116024, China.
Tel.: +86-411-84986182.
E-mail: cliu@dlut.edu.cn

Content

Synthetic method and characterization of ligands and iridium(III) complexes. *Page 2-*4.

Fig. S1- S5. Photoelectric properties of the iridium(III) complexes. Page 5-6.

Fig. S6- S9. Oxygen sensing properties of the iridium(III) complexes. Page 7-9.

Fig. S10- S22. NMR and HRMS of ligands and iridium(III) complexes. Page 10-16.

References Page 17.

Synthetic method and characterization of ligands and iridium(III) complexes

Scheme S1 Synthetic routes of the cyclometalated iridium(III) complexes for this study. (i) Pd(PPh₃)₄, Na₂CO₃, THF/H₂O 3 : 1 (v/v), 80 °C, N₂, 12h; (ii) IrCl₃·3H₂O, EtOCH₂CH₂OH/H₂O 3 : 1 (v/v), 120 °C, N₂, 24 h; (iii) 1,10-Phenanthroline, CH₂Cl₂/MeOH, 2 : 1 (v/v), 50°C, N₂, 12h; (iv) KPF₆, RT, 1 h.

Ligands and iridium(III) complexes were synthesized according to the literature methods for analogous compounds.¹ The whole synthesis route for iridium(III) complexes was shown in Scheme S1. For the sake of clarity and simplicity, the following abbreviations for the different C^N ligand containing ester group are used throughout: **epbz1** for ethyl 4-(2-pyridinyl) benzoate, **epbz2** for ethyl 4-(5-fluoro-2-pyridinyl) benzoate, **epbz3** for ethyl 4-(5-methyl-2-pyridinyl) benzoate; **Ir1** for [Ir(**epbz1**)₂(phen)]⁺PF₆⁻, **Ir2** for [Ir(**epbz2**)₂(phen)]⁺PF₆⁻, and **Ir3** for [Ir(**epbz3**)₂(phen)]⁺PF₆⁻.

epbz1: yield: 87.7%; a white solid.

¹H NMR (400 MHz, DMSO-*d*₆): δ = 8.72 (d, *J* = 4.6 Hz, 1H), 8.24 (d, *J* = 8.5 Hz, 2H), 8.07 (d, *J* = 4.2 Hz, 3H), 7.93 (t, *J* = 8.6 Hz, 1H), 7.47 – 7.36 (m, 1H), 4.34 (q, *J* = 7.1 Hz, 2H), 1.34 (t, *J* = 7.1 Hz, 3H).

epbz2: yield: 86.9%; a white solid.

¹H NMR (400 MHz, DMSO-*d*₆): δ = 8.71 (d, *J* = 2.9 Hz, 1H), 8.19 (t, *J* = 8.7 Hz, 2H), 8.15 (dd, *J* = 8.9 Hz, 4.3 Hz, 1H), 8.06 (dd, *J* = 8.5 Hz, 2.0 Hz, 2H), 7.88 (td, *J* = 8.6 Hz, 2.7 Hz, 1H), 4.34 (q, *J* = 7.1 Hz, 2H), 1.34 (t, *J* = 7.1 Hz, 3H).

epbz3: yield: 78.3%; a white solid.

¹H NMR (400 MHz, DMSO-*d*₆): δ = 8.56 (s, 1H), 8.21 (d, *J* = 8.5 Hz, 2H), 8.05 (d, *J* = 8.4 Hz, 2H), 7.96 (d, *J* = 8.1 Hz, 1H), 7.75 (dd, *J* = 8.1 Hz, 1.6 Hz, 1H), 4.34 (q, *J* = 7.1 Hz, 2H), 2.36 (s, 3H), 1.35 (t, *J* = 7.1 Hz, 3H).

Ir0: Yield: 70.4%; a yellow solid.

¹H NMR (400 MHz, DMSO- d_6): $\delta = 8.90$ (d, J = 8.2 Hz, 2H), 8.39 (s, 2H), 8.23 (dd, J = 22.8 Hz, 6.5 Hz, 4H), 8.05 (dd, J = 8.2 Hz, 5.1 Hz, 2H), 7.95 (d, J = 7.7 Hz, 2H), 7.87 (t, J = 7.8 Hz, 2H), 7.46 (d, J = 5.7 Hz, 2H), 7.06 (t, J = 7.5 Hz, 2H), 7.02 – 6.91 (m, 4H), 6.29 (d, J = 7.5 Hz, 2H).

Ir1: Yield: 68.2%; a yellow solid.

¹H NMR (400 MHz, DMSO- d_6): $\delta = 8.92$ (d, J = 8.4 Hz, 2H), 8.41 (d, J = 7.0 Hz, 4H), 8.24 - 8.19 (m, 2H), 8.10 (d, J = 8.3 Hz, 2H), 8.06 - 7.95 (m, 4H), 7.67 - 7.52 (m, 4H), 7.13 (t, J = 6.6 Hz, 2H), 6.87 (d, J = 1.6 Hz, 2H), 4.14 (q, J = 7.0 Hz, 4H), 1.17 (t, J = 7.1 Hz, 6H).

¹³C NMR (100 MHz, DMSO-*d*₆): δ = 166.5, 166.4, 150.8, 149.5, 149.2, 148.2, 148.2, 146.7, 139.3, 138.5, 132.3, 131.8, 131.6, 128.9, 126.6, 124.7, 124.4, 120.8, 60.9, 14.2. HRMS (m/z; EI): calcd. for C₄₀H₃₂N₄O₄Ir [M – PF₆]⁺ 825.2053; found 825.2122.

Ir2: Yield: 58.4%; a yellow-green solid.

¹H NMR (400 MHz, DMSO- d_6): δ = 8.91 (dd, J = 8.3 Hz, 1.3 Hz, 2H), 8.52 (dd, J = 9.2 Hz, 5.4 Hz, 2H), 8.39 (s, 2H), 8.17 (dd, J = 5.1 Hz, 1.2 Hz, 2H), 8.11 (dd, J = 11.3 Hz, 5.5 Hz, 4H), 8.01 (dd, J = 8.3 Hz, 5.1 Hz, 2H), 7.68 – 7.58 (m, 4H), 6.85 (d, J = 1.6 Hz, 2H), 4.16 (q, J = 7.1 Hz, 4H), 1.19 (t, J = 7.1 Hz, 6H).

¹³C NMR (100 MHz, DMSO-*d*₆) δ = 165.4, 162.8, 159.3, 157.3, 151.2, 147.8, 146.3, 139.1, 138.6, 138.3, 131.4, 130.3, 128.3, 127.2, 127.0, 125.1, 123.7, 122.7, 60.4, 14.2. HRMS (m/z; EI): calcd. for C₄₀H₃₀F₂N₄O₄Ir [M – PF₆]⁺ 861.1864; found 861.1914.

Ir3: Yield 61.3%; a yellow solid.

¹H NMR (400 MHz, DMSO-*d*₆): δ = 8.91 (dd, *J* = 8.3 Hz, 1.2 Hz, 2H), 8.40 (s, 2H), 8.31 (d, *J* = 8.5 Hz, 2H), 8.20 (dd, *J* = 5.1 Hz, 1.3 Hz, 2H), 8.04 (dd, *J* = 8.3 Hz, 4.4 Hz, 4H), 7.86 (d, *J* = 9.5 Hz, 2H), 7.61 (dd, *J* = 8.1 Hz, 1.6 Hz, 2H), 7.30 (s, 2H), 6.85 (d, *J* = 1.6 Hz, 2H), 4.13 (q, *J* = 7.1 Hz, 4H), 2.01 (s, 6H), 1.18 (t, *J* = 7.1 Hz, 6H). ¹³C NMR (100 MHz, DMSO-*d*₆): δ = 166.0, 163.5, 151.4, 149.6, 149.3, 148.8, 146.6, 140.3, 139.4, 135.6, 131.9, 131.6, 130.4, 128.8, 127.7, 125.0, 124.0, 121.4, 60.9, 18.0, 14.4.

HRMS (m/z; EI): calcd. for $C_{42}H_{36}N_4O_4Ir [M - PF_6]^+ 853.2366$; found 853.2413.

Empirical formula	$C_{48}H_{50}F_8IrN_4O_5P$
Formula weight	1138.09
Crystaltemperature (K)	296(2)
Crystal system	Monoclinic
Space group	P2/n
Z	2
a(Å)	15.1089(4)
b(Å)	11.0424(3)
c(Å)	15.6517(4)
$\alpha(\text{deg})$	90.00
β(deg)	110.4110(10)
γ(deg)	90.00
$V(Å^3)$	2447.35(11)
$D_x(Mg.cm^{-3})$	1.544
$\mu(\text{mm}^{-1})$	1.285
F(000)	1140.0
R _{int}	0.0225
No.of collected data(unique)	4292
No.of parameters varied	371
S	1.039
final R indices $[I \ge 2\sigma(I)]$	0.0334

Table S1. Crystallographic data for Ir2.

Fig. S1. Photoluminescence excitation spectra of Ir0~Ir3 in CH₂Cl₂.

Fig. S2. CIE Plots for Ir0 (0.50, 0.49), Ir1 (0.34, 0.60), Ir2 (0.31, 0.62), and Ir3 (0.36, 0.59).

Fig. S3. Cyclic voltamograms for complexes Ir0~Ir3.

Fig. S4. Emission spectra of the Ir0~Ir3 ($\lambda_{ex} = 400 \text{ nm}$) in different solvents, at ambient temperature.

Fig. S5. Phosphorescence decay profiles of complexes **Ir0~Ir3** in degassed CH₂Cl₂ and degassed CH₃CN, at ambient temperature.

Ir complexes	$k_{\rm r}({ m s}^{-1}) imes 10^5$	$k_{\rm nr}({\rm s}^{-1}) imes 10^5$
Ir0	2.87	9.63
Ir1	1.09	3.86
Ir2	1.23	2.01
Ir3	2.15	5.25

Table S2. Radiative rate constant and nonradiative rate constant of the Ir(III) complexes^a.

^a Calculated from $k_r = \Phi_p \times \tau^{-1}$, $k_{nr} = \tau^{-1} - k_r$ in degassed CH₂Cl₂ solution.

Table S3. Parameters for the O_2 -sensing film of the Ir1 with different polymers as the supporting matrix (fitting of the result to the two-site model).

Ir1 complex (0.5 wt%)	$f_1{}^a$	f_2^{a}	K _{SV1} ^b	K _{SV2} ^b	<i>r</i> ² c	K ^{app} _{SV d}	P _{02e}
Ir1 (EC)	0.9625	0.0375	0.01003	0.0000	0.98891	0.00965	103.63
Ir1 (PCHC)	0.9515	0.0485	0.00090	0.0001	0.96966	0.00086	1162.79
Ir1 (PS)	0.9837	0.0163	0.00205	0.0000	0.97691	0.00202	495.05

^a Ratio of the two portions of the iridium(III) complexes. ^b Quenching constant of the two portions. ^c Determination coefficients. ^d Weighted quenching constant, $K_{SV}^{bv} = f_1 K_{SV1} + f_2 K_{SV2}$. ^e The converse partial pressure at which the initial emission intensity of the film is quenched by 50% and calculated as $1/K_{SV}^{bv}$, in Torr.

Fig. S6. (a) Stern-Volmer plots (intensity ratios I₀/I versus O₂ partial pressure) of **Ir1** (0.5 wt%) immobilized into different oxygen sensing films; (b) Stern-Volmer plots of the different content of **Ir1** in **EC** film, at ambient temperature.

Table S4. Parameters for the O_2 -sensing film of the different content iridium(III) complexes with EC as the supporting matrix (fitting of the result to the two-site model).

Ir1 complex (wt%)	$f_1{}^a$	f_2^a	K _{SV1} ^b	K _{SV2} ^b	<i>r</i> ^{2 c}	K ^{app} _{SV d}	P _{02e}
0.1 wt% Ir1	0.85387	0.14613	0.01083	0.0001	0.99772	0.00625	160.00
0.5 wt% Ir1	0.96251	0.03749	0.00895	0.0000	0.99790	0.00861	116.14
1.0 wt% Ir1	0.97035	0.02965	0.00873	0.0001	0.99692	0.00847	118.06
2.0 wt% Ir1	0.96942	0.03058	0.00871	0.0001	0.99603	0.00844	118.48
5.0 wt% Ir1	0.93360	0.06640	0.00721	0.0001	0.99738	0.00674	148.37

^a Ratio of the two portions of the iridium(III) complex $Ir1_{k_{SV}}^{b}$ Quenching constant of the two portions. ^c Determination coefficients. ^d Weighted quenching constant, $K_{SV}^{b} = f_1 K_{SV1} + f_2 K_{SV2}$. ^e The axygen partial pressure at which the initial emission intensity of the film is quenched by 50% and calculated as $1/K_{SV}^{b}$, in Torr.

Fig. S7. Variation of the emission intensity of Ir0~Ir3 incorporated into EC with the oxygen concentration.

Ir complexes	τ (ns)					
	0% O ₂	2.17% O ₂	3.38% O ₂	5.11% O ₂	7.06% O ₂	9.61% O ₂
Ir0	1130.12	317.79	235.91	179.42	140.85	106.39
Ir1	3812.01	1108.53	729.75	504.58	352.34	296.32
Ir2	4569.79	1466.12	1105.58	761.36	530.53	419.06
Ir3	3210.56	758.77	545.03	381.45	271.97	206.91

Table S5. Lifetime Data for Ir0~Ir3^a.

^a The lifetime (τ) in CH₃CN solution (1.0 × 10⁻⁵ M) on the different concentration of oxygen (0-9.61%) was measured at ambient temperature.

Fig. S8. Stern–Volmer plots (intensity ratios τ_0/τ versus O₂ partial pressure (0-9.61%)) of Ir0~Ir3 in CH₃CN solutions (1.0 × 10⁻⁵ M)

Fig. S9. The reproducibility tests of oxygen sensing films of Ir0.

Fig. S11. The ¹H NMR spectrum of epbz2 in DMSO- d_6 .

Fig. S14. The ¹H NMR spectrum of Ir1 in DMSO- d_6 .

References

[1] N. M. Shavaleev, F. Monti, R. D. Costa, R. Scopelliti, H. J. Bolink, E. Orti, G. Accorsi, N. Armaroli, E. Baranoff, M. Grätzel and M. K. Nazeeruddin, *Inorg. Chem.*, 2012, **51**, 2263-2271.