Electronic Supplementary Material (ESI) for Dalton Transactions. This journal is © The Royal Society of Chemistry 2015

**Electronic Supplementary Information** 

## Speciation of americium in seawater and accumulation in marine sponge *Aplysina* cavernicola.

Melody MALOUBIER<sup>a,b\*</sup>, Hervé MICHEL<sup>a</sup>, Olivier P. THOMAS<sup>a</sup>, Pier Lorenzo SOLARI<sup>c</sup>, Philippe MOISY<sup>d</sup>, Marie-Aude TRIBALAT<sup>a</sup>, Marie Yasmine Dechraoui BOTTEIN<sup>e</sup>, F.R. OBERHAENSLI<sup>e</sup>, Marguerite MONFORT<sup>b</sup>, Christophe MOULIN<sup>b</sup>, Christophe DEN AUWER<sup>a</sup>

Content: 8 pages including cover sheet

Table S1: Thermodynamic constants for americium speciation

Table S2: Thermodynamic constants for europium speciation

Table S3: Average concentration for co-existing metal species in seawater

Figure S4: Prediction speciation diagram of europium at 4.10<sup>-17</sup> M in seawater (JCHESS®)

Figure S5: Prediction speciation diagram of americium at 4.10<sup>-17</sup> M in seawater (JCHESS®)

Figure S6: Imaginary part of the Fourier transform of the EXAFS spectrum of the doped seawater solution at  $[Am^{3+}] = 5x10^{-5}$  M. Experimental spectrum in circles, adjustment with one bidentate carbonate in dots, with one monodentate carbonate in dash dots and final adjustment in black lines.

Figure S7: Imaginary part of the Fourier transform of the EXAFS spectrum of the doped seawater solution at  $[Eu^{3+}] = 5x10^{-5}$  M. Experimental spectrum in circles, adjustment with sodium in black lines and without sodium in dots.

• Table S1: Equilibrium constants for Am<sup>3+</sup> at I=0 used for the speciation calculation

| Equilibrium                                             | Log <sub>10</sub> K° | Reference |
|---------------------------------------------------------|----------------------|-----------|
| $Am^{3+} + CO_3^{2-} = AmCO_3^{+}$                      | 7.80                 | [2]       |
| $Am^{3+} + 2 CO_3^{2-} = Am(CO_3)_2^{-}$                | 12.3                 | [2]       |
| $Am^{3+} + 3 CO_3^{2-} = Am(CO_3)_3^{3-}$               | 15.2                 | [2]       |
| $Am^{3+} + H_2O = AmOH^{2+} + H^+$                      | -6.40                | [2]       |
| $Am^{3+}+ 2 H_2O = Am(OH)_2^++ 2H^+$                    | -14.1                | [2]       |
| $Am^{3+}+3 H_2O = Am(OH)_3 (aq)+3H^+$                   | -25.7                | [2]       |
| $Am^{3+} + NO_3^- = AmNO_3^{2+}$                        | 1.33                 | [2]       |
| $Am^{3+} + SO_4^{2-} = AmSO_4^+$                        | 3.85                 | [2]       |
| $Am^{3+} + 2 SO_4^{2-} = Am(SO_4)_2^{-1}$               | 5.40                 | [2]       |
| Am <sup>3+</sup> + Cl <sup>-</sup> = AmCl <sup>2+</sup> | 1.05                 | [2]       |
| $Am^{3+}+ F^{-}= AmF^{2+}$                              | 3.40                 | [2]       |
| $Am^{3+} + 2F^{-} = AmF_{2}^{+}$                        | 5.80                 | [2]       |

• Table S2: Equilibrium constants for Eu<sup>3+</sup> at I=0 used for the speciation calculation

| Equilibrium                                                                       | Log <sub>10</sub> K° | Reference |
|-----------------------------------------------------------------------------------|----------------------|-----------|
| $Eu^{3+} + HCO_3^- = EuCO_3^+ + H^+$                                              | -2.41                | [40-41]   |
| $Eu^{3+} + 2 HCO_3^{-} = Eu(CO_3)_2^{-} + 2H^{+}$                                 | -8.40                | [40-41]   |
| $Eu^{3+}+3 HCO_3^-= Eu(CO_3)_3^{3-}+3 H^+$                                        | -16.8                | [40-41]   |
| $Eu^{3+} + H_2O = EuOH^{2+} + H^+$                                                | -7.91                | [40-41]   |
| $Eu^{3+}+ 2 H_2O = Eu(OH)_2^++ 2H^+$                                              | -14.9                | [40-41]   |
| $Eu^{3+}+3H_2O = Eu(OH)_3(aq)+3H^+$                                               | -24.1                | [40-41]   |
| $Eu^{3+} + NO_3^- = EuNO_3^{2+}$                                                  | 0.875                | [40-41]   |
| Eu <sup>3+</sup> + SO <sub>4</sub> <sup>2-</sup> = EuSO <sub>4</sub> <sup>+</sup> | 3.64                 | [40-41]   |
| $Eu^{3+} + 2 SO_4^{2-} = Eu(SO_4)_2^{-}$                                          | 5.47                 | [40-41]   |
| Eu <sup>3+</sup> + Cl <sup>-</sup> = EuCl <sup>2+</sup>                           | 0.309                | [40-41]   |
| Eu <sup>3+</sup> + F <sup>-</sup> = EuF <sup>2+</sup>                             | 4.44                 | [40-41]   |
| Eu <sup>3+</sup> + 2F <sup>-</sup> = EuF <sub>2</sub> +                           | 7.71                 | [40-41]   |

• Table S3: Average concentration for co-existing metal and other species in seawater

| Metal | Concentration (nM)   | Reference  |  |
|-------|----------------------|------------|--|
| Zn    | 8.1                  | [41,43]    |  |
| Cu    | 3.3                  | [41-43]    |  |
| Fe    | 2.7                  | [41]       |  |
| Co    | 0.11                 | [45]       |  |
| Pb    | 0.17                 | [46]       |  |
| Cd    | 1.0                  | [41-42,48] |  |
| Ni    | 11                   | [42,48]    |  |
| Hg    | 8.5 10 <sup>-3</sup> | [49-50]    |  |
| Al    | 38                   | [51]       |  |
| I     | 500                  | [47]       |  |
| В     | 0.4 mM               | [44]       |  |

• Figure S4: Prediction speciation diagram of europium at 4.10<sup>-17</sup> M in seawater (JCHESS®)



• Figure S5: Prediction speciation diagram of americium at  $4.10^{-17}$  M in seawater (JCHESS®)



• **Figure S6**: Imaginary part of the Fourier transform of the EXAFS spectrum of the doped seawater solution at [Am³+] = 5x10<sup>-5</sup> M. Experimental spectrum in circles, adjustment with one bidentate carbonate in dots , with one monodentate carbonate in dash dots and final adjustment in black lines.



• Figure S7: Imaginary part of the Fourier transform of the EXAFS spectrum of the doped seawater solution at  $[Eu^{3+}] = 5x10^{-5}$  M. Experimental spectrum in circles, adjustment with sodium in black lines and without sodium in dots.

