Speciation of americium in seawater and

accumulation in marine sponge Aplysina

cavernicola.

Melody MALOUBIER ${ }^{a, b^{*} \text {, Hervé MICHEL }}$, Olivier P. THOMAS ${ }^{a}$, Pier Lorenzo SOLARIc, Philippe MOISY ${ }^{d}$, Marie-Aude TRIBALAT ${ }^{a}$, Marie Yasmine Dechraoui BOTTEINe, F.R. OBERHAENSLI , Marguerite MONFORT ${ }^{b}$, Christophe MOULIN ${ }^{b}$, Christophe DEN AUWER ${ }^{a}$

Content: 8 pages including cover sheet
Table S1: Thermodynamic constants for americium speciation
Table S2: Thermodynamic constants for europium speciation
Table S3: Average concentration for co-existing metal species in seawater
Figure S4: Prediction speciation diagram of europium at $4.10^{-17} \mathrm{M}$ in seawater (JCHESS®)
Figure S5: Prediction speciation diagram of americium at $4.10^{-17} \mathrm{M}$ in seawater (JCHESS®)
Figure S6: : Imaginary part of the Fourier transform of the EXAFS spectrum of the doped seawater solution at $\left[\mathrm{Am}^{3+}\right]=5 \times 10^{-5} \mathrm{M}$. Experimental spectrum in circles, adjustment with one bidentate carbonate in dots, with one monodentate carbonate in dash dots and final adjustment in black lines.

Figure S7: Imaginary part of the Fourier transform of the EXAFS spectrum of the doped seawater solution at $\left[\mathrm{Eu}^{3+}\right]=5 \times 10^{-5} \mathrm{M}$. Experimental spectrum in circles, adjustment with sodium in black lines and without sodium in dots.

- Table S1: Equilibrium constants for Am^{3+} at $\mathrm{I}=0$ used for the speciation calculation

Equilibrium	Log $_{10} \mathrm{~K}^{\circ}$	Reference
$\mathrm{Am}^{3+}+\mathrm{CO}_{3}{ }^{2-}=\mathrm{AmCO}_{3}{ }^{+}$	7.80	$[2]$
$\mathrm{Am}^{3+}+2 \mathrm{CO}_{3}{ }^{2-}=\mathrm{Am}\left(\mathrm{CO}_{3}\right)_{2}{ }_{2}^{-}$	12.3	$[2]$
$\mathrm{Am}^{3+}+3 \mathrm{CO}_{3}{ }^{2-}=\mathrm{Am}\left(\mathrm{CO}_{3}\right)_{3}^{3-}$	15.2	$[2]$
$\mathrm{Am}^{3+}+\mathrm{H}_{2} \mathrm{O}=\mathrm{AmOH}^{2+}+\mathrm{H}^{+}$	-6.40	$[2]$
$\mathrm{Am}^{3+}+2 \mathrm{H}_{2} \mathrm{O}=\mathrm{Am}(\mathrm{OH})_{2}{ }^{+}+2 \mathrm{H}^{+}$	-14.1	$[2]$
$\mathrm{Am}^{3+}+3 \mathrm{H}_{2} \mathrm{O}=\mathrm{Am}(\mathrm{OH})_{3}(\mathrm{aq})+3 \mathrm{H}^{+}$	-25.7	$[2]$
$\mathrm{Am}^{3+}+\mathrm{NO}_{3}^{-}=\mathrm{AmNO}_{3}{ }^{2+}$	1.33	$[2]$
$\mathrm{Am}^{3+}+\mathrm{SO}_{4}{ }^{2-}=\mathrm{AmSO}_{4}^{+}$	3.85	$[2]$
$\mathrm{Am}^{3+}+2 \mathrm{SO}_{4}^{2-}={\mathrm{Am}\left(\mathrm{SO}_{4}\right)_{2}{ }^{-}}^{\mathrm{Am}^{3+}+\mathrm{Cl}^{-}=\mathrm{AmCl}^{2+}}$	5.40	$[2]$
$\mathrm{Am}^{3+}+\mathrm{F}^{-}=\mathrm{AmF}^{2+}$	1.05	$[2]$
$\mathrm{Am}^{3+}+2 \mathrm{~F}^{-}=\mathrm{AmF}_{2}{ }^{+}$	3.40	$[2]$

- Table S2: Equilibrium constants for Eu^{3+} at $\mathrm{I}=0$ used for the speciation calculation

Equilibrium	$\mathrm{Log}_{10} \mathrm{~K}^{\circ}$	Reference
$\mathrm{Eu}^{3+}+\mathrm{HCO}_{3}{ }^{-}=\mathrm{EuCO}_{3}{ }^{+}+\mathrm{H}^{+}$	-2.41	$[40-41]$
$\mathrm{Eu}^{3+}+2 \mathrm{HCO}_{3}=\mathrm{Eu}\left(\mathrm{CO}_{3}\right)_{2}{ }^{-}+2 \mathrm{H}^{+}$	-8.40	$[40-41]$
$\mathrm{Eu}^{3+}+3 \mathrm{HCO}_{3}{ }^{-}=\mathrm{Eu}\left(\mathrm{CO}_{3}\right)_{3}{ }^{3-}+3 \mathrm{H}^{+}$	-16.8	$[40-41]$
$\mathrm{Eu}^{3+}+\mathrm{H}_{2} \mathrm{O}=\mathrm{EuOH}^{2+}+\mathrm{H}^{+}$	-7.91	$[40-41]$
$\mathrm{Eu}^{3+}+2 \mathrm{H}_{2} \mathrm{O}=\mathrm{Eu}(\mathrm{OH})_{2}{ }^{+}+2 \mathrm{H}^{+}$	-14.9	$[40-41]$
$\mathrm{Eu}^{3+}+3 \mathrm{H}_{2} \mathrm{O}=\mathrm{Eu}(\mathrm{OH})_{3}(\mathrm{aq})+3 \mathrm{H}^{+}$	-24.1	$[40-41]$
$\mathrm{Eu}^{3+}+\mathrm{NO}_{3}^{-}=\mathrm{EuNO}_{3}{ }^{2+}$	0.875	$[40-41]$
$\mathrm{Eu}^{3+}+\mathrm{SO}_{4}{ }^{2-}=\mathrm{EuSO}_{4}^{+}$	3.64	$[40-41]$
$\mathrm{Eu}^{3+}+2 \mathrm{SO}_{4}{ }^{2-}={\mathrm{Eu}\left(\mathrm{SO}_{4}\right)_{2}{ }^{-}}^{\mathrm{Eu}^{3+}+\mathrm{Cl}^{-}=\mathrm{EuCl}^{2+}}$	5.47	$[40-41]$
$\mathrm{Eu}^{3+}+\mathrm{F}^{-}=\mathrm{EuF}^{2+}$	0.309	$[40-41]$
$\mathrm{Eu}^{3+}+2 \mathrm{~F}^{-}=\mathrm{EuF}_{2}{ }^{+}$	4.44	$[40-41]$
	7.71	$[40-41]$

- Table S3: Average concentration for co-existing metal and other species in seawater

Metal	Concentration (nM)	Reference
Zn	8.1	$[41,43]$
Cu	3.3	$[41-43]$
Fe	2.7	$[41]$
Co	0.11	$[45]$
Pb	0.17	$[46]$
Cd	1.0	$[41-42,48]$
Ni	11	$[42,48]$
Hg	8.510^{-3}	$[49-50]$
Al	38	$[51]$
I	500	$[47]$
B	0.4 mM	$[44]$

- Figure S4: Prediction speciation diagram of europium at $4.10^{-17} \mathrm{M}$ in seawater (JCHESS®)

- Figure S5: Prediction speciation diagram of americium at $4.10^{-17} \mathrm{M}$ in seawater (JCHESS®)

- Figure S6: Imaginary part of the Fourier transform of the EXAFS spectrum of the doped seawater solution at $\left[\mathrm{Am}^{3+}\right]=5 \times 10^{-5} \mathrm{M}$. Experimental spectrum in circles, adjustment with one bidentate carbonate in dots, with one monodentate carbonate in dash dots and final adjustment in black lines.

- Figure S7: Imaginary part of the Fourier transform of the EXAFS spectrum of the doped seawater solution at $\left[\mathrm{Eu}^{3+}\right]=5 \times 10^{-5} \mathrm{M}$. Experimental spectrum in circles, adjustment with sodium in black lines and without sodium in dots.

