Supporting Information

Synthesis of Compound-1: A mixture of 2,5-furandicarboxylic acid (0.03g), $In(NO_3)_3 \cdot xH_2O$ (0.03g), 2-(2-aminoethylamino)ethanol (0.01g), concentrated nitric acid (0.02g), dimethylacetamide (1.02g) and methanol (4.10g) was stirred in a 23ml vial for 25 minutes and then heated at 120°C for 3 days. After cooled to room temperature and washed by methanol, brown crystals were obtained.

Synthesis of Compound-2: A mixture of 2,5-furandicarboxylic acid (0.03g), $In(NO_3)_3 \cdot xH_2O$ (0.015g), 2-(2-aminoethylamino)ethanol (0.01g), concentrated nitric acid (0.02g), dimethylacetamide (4.01g) and methanol (1.02g) was stirred in a 23ml vial for 25 minutes and then heated at 120°C for 3 days. After cooled to room temperature and washed by methanol, brown crystals were obtained.

Synthesis of Compound-3: A mixture of 2,5-furandicarboxylic acid (0.015g), $In(NO_3)_3 \cdot xH_2O(0.03g)$, 3-amino-5-mercapto-1,2,4-triazole (0.012g), tetramethylurea (1.08g) and water (4.01g) was stirred in a 23ml vial for 25 minutes and then heated at 80 °C for 3 days. After cooled to room temperature and washed by water, clear crystals were obtained.

Measurements:

Powder X-ray diffraction: The experiments were performed on a Bruker D8 Advance X-ray powder diffractometer operating at 40 kV and 40 mA (CuK α radiation, $\lambda = 1.5418$ Å). The simulated powder XRD pattern was obtained based on the single-crystal data.

Single crystal X-ray diffraction: The measurements were performed on a Bruker APEX II diffractometer with nitrogen-flow temperature controller using graphite-monochromated MoK α radiation ($\lambda = 0.71073$ Å), operating in the ω and φ scan mode.

Thermal analysis: The thermogravimetric analysis (TGA) was performed on a TA Instruments TGA Q500 apparatus in the temperature range of 30 $^{\circ}$ C to 800 $^{\circ}$ C under N₂ flow at a heating rate of 5 $^{\circ}$ C/min.

Gas adsorption measurement: The measurements were performed on a Micromeritics ASAP 2020 surface-area and pore-size analyzer.

Table S1.Crystal Data and Structure Refinements for the In-MOFs in this study		
Compound-1	Compound-2	Compound-3
$C_{18}H_{12}In_{3}O_{19}\bullet(NO_{3})$	$C_{12}H_4InO_{10}\bullet(C_2H_8N)$	$C_{12}H_8In_2O_{13}$
938.70	469.70	589.79
Rhombohedral	Tetragonal	Monoclinic
13.9508(19)	9.7460(4)	10.7435(6)
13.9508(19)	9.7460(4)	21.4819(12)
22.402(7)	31.081(2)	10.7721(7)
90.00	90.00	90.00
90.00	90.00	105.1130(10)
120.00	90.00	90.00
3775.9(14)	2952.2(3)	2400.1(2)
195(2)	195(2)	195(2)
R32	I4(1)/amd	<i>P</i> 2(1)/ <i>m</i>
3	4	4
7331	6628	8139
1277	725	4274
0.0502	0.0276	0.0252
0.0571	0.0445	0.0279
0.1850	0.1263	0.0774
0.0579	0.0461	0.0376
0.1863	0.1285	0.0804
1.035	1.040	1.036
	$1-MOFs$ in this study Compound-1 $C_{18}H_{12}In_3O_{19} \cdot (NO_3)$ 938.70 Rhombohedral 13.9508(19) 13.9508(19) 22.402(7) 90.00 90.00 90.00 120.00 3775.9(14) 195(2) <i>R</i> 32 3 7331 1277 0.0502 0.0571 0.1850 0.0579 0.1863 1.035	AMOFs in this study Compound-1 Compound-2 C ₁₈ H ₁₂ In ₃ O ₁₉ •(NO ₃) C ₁₂ H ₄ InO ₁₀ •(C ₂ H ₈ N) 938.70 469.70 Rhombohedral Tetragonal 13.9508(19) 9.7460(4) 22.402(7) 31.081(2) 90.00 90.00 90.00 90.00 90.00 90.00 9120.00 90.00 3775.9(14) 2952.2(3) 195(2) 195(2) R32 14(1)/amd 3 4 7331 6628 1277 725 0.0502 0.0276 0.0571 0.0445 0.1850 0.1263 0.0579 0.0461 0.1863 0.1285 1.035 1.040

 $\overline{R_1 = \sum ||F_0| - |F_c|| / \sum |F_0|, wR} = \{\sum w[(F_0)^2 - (F_c)^2]^2 / \sum w[(F_0)^2]^2 \}^{1/2}.$

Figure S1. The pcu network formed by indium trimers and FDA.

Figure S2. The 2D network formed by indium monomers and FDA.

Figure S3. (a) 3D framework, Compound-3, formed by octahedrally coordinated indiums; (b)The construction of chain by octahedrally coordinated indiums in Compound-3; (c) The connection between two chains.

Figure S4. Nyquist plots of the pellet sample Compound-1 at various temperatures and 99.5% RH condition, S=1.327cm², L=0.097cm. The inset shows Nyquist plot of the pellet sample Compound-1 at 43.1 °C and 99.5% RH condition.

Figure S5. (a) Nyquist plots of the pellet sample Compound-1 at 22.5° C and various RH condition, S=1.327cm², L=0.050cm. The inset shows Nyquist plots of Compound-1 at 22.5° C and 43.5% RH, 75.5% RH and 84.5% RH; (b) Humidity dependence of conductivity at 25 °C for the pellet sample Compound-1.

Figure S6. Nyquist plots of the pellet sample Compound-2 at 22.5°C and 99.5% RH (a) and 84.5% RH (b), S=1.327cm², L=0.114cm.

Figure S7. Nyquist plots of the single crystal sample Compound-2 at 22.5°C and 99.5% RH (a), 84.5% RH (b) and 75.5% RH (c), $S=4.57\times10^{-5}$ cm², L=0.0099cm.

Figure S8. CO₂ and C₂H₂ adsorption isotherms of Compound-1.

Figure S16. CO_2 and C_2H_2 adsorption isotherms of Compound-3.