Supporting Information

Co-sensitization Promoted Light Harvesting with a New Mixed-

Addenda Polyoxometalate $[Cu(C_{12}H_8N_2)_2]_2[V_2W_4O_{19}]\cdot \frac{4}{4}H_2O$ in Dye-

Sensitized Solar Cells

Sha-Sha Xu,^a Wei-Lin Chen,^{*a} Yan-Hua Wang,^a Yang-Guang Li,^a Zhu-Jun Liu,^a Chun-Hui Shan,^a Zhong-Min Su^a and En-Bo Wang^{*a}

^aKey laboratory of Polyoxometalate Science of Ministry of Education, Department of Chemistry, Northeast Normal University, Renmin Street No.5268, Changchun, Jilin, 130024, P. R. China. E-mail: chenwl@nenu.edu.cn (W. L. Chen), wangeb889@nenu.edu.cn (E. B. Wang), Tel: +86-431-85098787.

bond	bond -length	bond-dist	$\left[\exp\left[\frac{r_0-r}{B}\right]\right]$	$BVS = \Sigma exp[(r_0 - r)/B]$
W(1)-O(2)	1.91	1.96	0.873	
W(1)-O(3)	1.91	2.296	0.351	
W(1)-	1.91	1.875	1.099	(250
W(1)-O(7)	1.91	1.974	0.841	6.259
W(1)-O(8)	1.91	1.661	1.960	
W(1)-O(9)	1.91	1.863	1.135	
bond	bond -length	bond-dist	$[exp[(r_0-r)/B]]$	$BVS = \Sigma exp[(r_0 - r)/B]$
W(2)-O(1)	1.91	1.894	1.044	
W(2)-O(3)	1.91	2.314	0.335	
W(2)-O(4)#1	1.91	1.928	0.952	(252
W(2)-O(7)#1	1.91	1.956	0.883	0.232
W(2)-O(9)	1.91	1.895	1.041	
W(2)-O(10)	1.91	1.654	1.997	
bond	bond -length	bond-dist	$[exp[(r_0-r)/B]]$	$BVS = \Sigma exp[(r_0 - r) / B]$
W(3)-O(1)	1.91	1.917	0.981	
W(3)-O(2)	1.91	1.886	1.067	
W(3)-O(3)	1.91	2.285	0.363	6.051
W(3)-O(4)	1.91	1.889	1.058	0.031
W(3)-O(5)	1.91	1.943	0.915	
W(3)-O(6)	1.91	1.721	1.667	
bond	bond -length	bond-dist	$[exp[(r_0-r)/B]]$	$BVS = \Sigma exp[(r_0 - r)/B]$
V(1)-O(2)	1.803	1.96	0.65	
V(1)-O(3)	1.803	2.296	0.263	
V(1)-O(5)#1	1.803	1.875	0.823	1 680
V(1)-O(7)	1.803	1.974	0.630	4.009
V(1)-O(8)	1.803	1.661	1.468	
V(1)-O(9)	1.803	1.863	0.850	
bond	bond -length	bond-dist	$\left[\exp\left[\left(r_{0}-r\right)/B\right]\right]$	BVS= $\Sigma exp[(r_0 - r)/B]$
V(2)-O(1)	1.803	1.894	0.782	
V(2)-O(3)	1.803	2.314	0.251	
V(2)-O(4)#1	1.803	1.928	0.713	4 (00
V(2)-O(7)#1	1.803	1.956	0.661	4.683
V(2)-O(9)	1.803	1.895	0.780	
V(2)-O(10)	1.803	1.654	1.496	

Table S1 Bond Valence Sums

bond	bond -length	bond-dist	$[exp[(r_0-r)/B]]$	BVS= $\Sigma exp[(r_0 - r)/B]$
Cu(1)-N(1)	1.763	2.115	0.386	
Cu(1)-N(2)	1.763	1.977	0.561	
Cu(1)-N(3)	1.763	2.088	0.415	2.339
Cu(1)-N(4)	1.763	1.960	0.587	
Cu(1)-O(7)	1.679	2.027	0.390	

Symmetry transformations used to generate equivalent atoms: #1 -x+1/2,-y+1/2,-z+1

Table S2 Comparison of M-O average bond distances of compound 1 with those in

anion	M-O _c (Å)	M-O _b (Å)	M-O _t (Å)
$[W_6O_{19}]^{2-}$	2.331	1.922	1.694
$[V_2W_4O_{19}]^{4-}$	2.305	1.922	1.695
1	2.299	1.915	1.679

reported cluster anions.

Fig. S1 Packing arrangement of 1 viewed along c axis. The polyanions are represented with polyhedra: {CuON₄}, yellow polyhedron; {W(V)O₆}, blue octahedron; C (grey) and N (blue) ions are shown with thick sticks.

Fig. S2 The XPS spectra of C1s(1), Cu2p(2), W4f(3), V2p(4)

Fig. S3 The EDX diagram of 1

Fig. S4 The FT-IR spectra of 1(green), 1@TiO₂/19P25(red) and pure P25(black)

Fig. S5 The UV-Vis spectrum of 1

Fig. S6 Thermogravimetric analysis (TGA) curve of 1

Fig. S7 The simulated and measured XRD patterns of 1

Fig. S8 XRD pattern of the 1@TiO₂/19P25 composite

Fig. S9 The current voltage curves of DSSCs with $1@TiO_2/nP25$ (n=5, 7, 19) and pure P25 electrode under AM 1.5 radiation (100 mW cm⁻²). The inset is the current voltage curves under dark condition.

Fig. S10 Equivalent circuit used to fit the impedance measurements on the DSSCs

Table S3 Fitted parameters and electron lifetime calculated from f_{max}

Sample	$\frac{Rs(\Omega)}{\Omega}$	$R_{l}(\Omega)$	$R_2(\Omega)$	f _{max} (Hz)	$\tau_e(\mathrm{ms})$
<mark>N719</mark>	<mark>33.2</mark>	<mark>37.9</mark>	<mark>5.83</mark>	<mark>56.3</mark>	<mark>2.83</mark>
<mark>1/N719</mark>	<mark>27. 1</mark>	<mark>34.9</mark>	<mark>5.17</mark>	<mark>27.7</mark>	<mark>5.75</mark>

Fig. S11 The emission spectrum (Ex=320 nm) of the phen

Table 34 Select	eu bonu iengin	s (A) and bond angles (
W(1)/V(1)-O(2)	1.961	W(3) -O(1)	1.917
W(1)/V(1)-O(3)	2.296	W(3)-O(2)	1.886
W(1)/V(1)-O(5)#1	1.875	W(3) -O(3)	2.285
W(1)/V(1)-O(7)	1.974	W(3) -O(4)	1.889
W(1)/V(1)-O(8)	1.661	W(3) -O(5)	1.943
W(1)/V(1)-O(9)	1.863	W(3) -O(6)	1.721
W(2)/V(2)-O(1)	1.894	Cu(1)-N(1)	2.115
W(2)/V(2)-O(3)	2.314	Cu(1)-N(2)	1.977
W(2)/V(2)-O(4)#1	1.928	Cu(1)-N(3)	2.088
W(2)/V(2)-O(7)#1	1.956	Cu(1)-N(4)	1.960
W(2)/V(2)-O(9)	1.895	Cu(1)-O(7)	2.027
W(2)/V(2)-O(10)	1.654		
N(1)-C(1)	1.332(18)	N(2)-C(12)	1.315(19)
N(1)-C(5)	1.369(18)	N(2)-C(7)	1.361(19)
N(3)-C(13)	1.323(18)	N(4)-C(24)	1.341(17)
N(3)-C(17)	1.364(18)	N(4)-C(18)	1.380(17)
O(8)-W(1)-O(2)	102.9(4)	O(1)-W(2)-O(3)	76.3(3)
O(8)-W(1)-O(3)	177.0(4)	O(1)-W(2)-O(4)#1	152.1(4)
O(8)-W(1)-O(7)	100.5(4)	O(1)-W(2)-O(7)#1	87.4(4)
O(8)-W(1)-O(9)	105.1(4)	O(1)-W(2)-O(9)	87.7(4)
O(8)-W(1)-W(2)	136.8(4)	O(1)-W(2)-W(1)	82.0(3)
O(7)-Cu(1)-N(3)	133.8(4)	O(7)-Cu(1)-N(1)	114.3(4)
N(2)-Cu(1)-O(7)	91.8(4)	N(4)-Cu(1)-O(9)	94.6(4)
N(2)-Cu(1)-N(1)	81.3(5)	N(4)-Cu(1)-N(2)	173.6(5)
N(2)-Cu(1)-N(3)	93.7(5)	N(4)-Cu(1)-N(3)	81.9(5)

Table S4 Selected bond lengths (Å) and bond angles (°) of 1

Symmetry transformations used to generate equivalent atoms: #1 -x+1/2,-y+1/2,-

z+1.