Supporting information

Tin Sulfide and Selenide Clusters soluble in Organic Solvents with the Core Structures of Sn₄S₆ and Sn₄Se₆

Mingdong Zhong,^a Zhi Yang,^{*,a} Yafei Yi,^a Dongxiang Zhang,^a Kening Sun,^a

Herbert W. Roesky,*,b Ying Yang,^c

^aSchool of Chemical Engineering and Environment, Beijing Institute of Technology,

100081 Beijing, China

^bInstitut für Anorganische Chemie der Georg-August-Universität Göttingen,

Tammannstrasse 4, 37077 Göttingen, Germany

^cSchool of Chemistry and Chemical Engineering, Central South University, 410083 Changsha, China

E-mail: zhiyang@bit.edu.cn; hroesky@gwdg.de

Content:

S2. Supplementary of Mass Spectrometry and NMR Spectroscopy Data

S6.Supplementary UV-Visible Absorption Spectroscopy Data

S7. Raman data of 2 and 3

S8. Plausible Mechanism for the Polymerization of ε-Caprolactone Initiated by 2 and

3, and the ¹H NMR of the PCL

S9. References

2. Supplementary of Mass Spectrometry and NMR Spectroscopy Data

Figure S1: ESI-MS(+) mass spectrum of LSnCl₃ 4

Simulations of 2 mass peaks:

Chemical Formula: C₆₀H₁₀₄N₄S₆Si₄Sn₄

Exact Mass: 1664.18

Molecular Weight: 1661.07

m/z: 1661.18 (100.0%), 1659.18 (90.7%), 1662.18 (89.5%), 1660.18 (83.7%), 1663.18 (82.9%), 1664.18 (80.6%),

1660.17
(72.4%),
1657.18
(69.4%),
1658.17
(68.7%),
1658.18
(65.2%),
1665.18
(60.9%),
1662.17
(57.1%),

1666.18
(53.0%),
1659.17
(50.0%),
1661.17
(47.2%),
1656.17
(46.3%),
1656.18
(44.5%),
1663.17
(41.1%),

1667.18
(37.7%),
1657.17
(37.5%),
1655.18
(33.5%),
1664.17
(33.5%),
1655.17
(30.4%),
1668.18
(29.7%),

1665.17
(26.6%),
1654.18
(25.0%),
1654.17
(23.8%),
1669.18
(21.8%),
1666.17
(21.2%),
1653.18
(15.8%),

1653.17
(14.7%),
1667.17
(13.6%),
1670.18
(13.3%),
1668.17
(11.9%),
1652.17
(9.7%),
1651.17

(45.5%),
1667.19
(3.8%),
1672.18
(6.2%),
1670.17
(5.4%),
1650.18
(4.9%),
1669.17
(2.7%),
1651.17

(45.5%),
1667.19
(3.8%),
1673.18
(3.4

Figure S2: APCI(+) mass spectrum of 2

Simulations of **3** mass peaks:

Chemical Formula: C60H104N4Se6Si4Sn4

Exact Mass: 1951.84

Molecular Weight: 1942.44

m/z:	194	1.85	(100).0%),	, 194	0.85	(99.:	5%), 1	<u>.942</u>	.85 (<mark>99.2</mark> %	6), 1	<mark>943.</mark> 8	85 (9	<mark>)5.0%</mark>), 19	<mark>39.8</mark> :	5 (93	<mark>3.9%)</mark>	, 194	14.85	<mark>(90.2</mark>	<mark>%),</mark>
<mark>1938</mark>	.85	<mark>(88</mark> .	<mark>.1%)</mark> ,	194	5.85	<mark>(81</mark> .	<mark>.8%),</mark>	<mark>1937</mark>	.85	<mark>(77.6</mark>	<mark>5%),</mark>	<mark>1940</mark>	5.85	<mark>(74.</mark>	3%),	<mark>193</mark>	6.85	<mark>(68</mark> .	7%),	<mark>194</mark>	7.85	<mark>(63.0</mark>	<mark>%),</mark>
<mark>1935</mark>	.85	<mark>(57</mark> .	<mark>.3%),</mark>	1948	8.85	<mark>(54</mark> .	1%),	<mark>1934</mark>	.85	<mark>(47.2</mark>	<mark>2%),</mark>	<mark>194</mark> 9	9.85	<mark>(44.</mark>	0%),	<mark>194</mark>	3.84	<mark>(43</mark> .	<mark>.5%),</mark>	<mark>194</mark>	1.84	<mark>(40.6</mark>	<mark>%),</mark>
<mark>1945</mark>	.84	<mark>(39</mark> .	<mark>.3%),</mark>	1942	2.84	<mark>(37</mark> .	<mark>.9%),</mark>	<mark>1944</mark>	.84	<mark>(37.</mark> 1	<mark>1%),</mark>	<mark>1933</mark>	3.85	<mark>(36.</mark>	0%),	<mark>195</mark>	0.85	<mark>(35</mark> .	<mark>6%),</mark>	<mark>193</mark>	<mark>9.84</mark>	<mark>(31.4</mark>	<mark>%),</mark>
<mark>1940</mark>	.84	<mark>(31</mark> .	<mark>.4%),</mark>	194′	7.84	<mark>(30</mark> .	<mark>.6%),</mark>	<mark>1946</mark>	.84	<mark>(29.8</mark>	<mark>8%),</mark>	<mark>1932</mark>	2.85	<mark>(27.</mark>	4%),	<mark>195</mark>	1.85	<mark>(26</mark> .	<mark>.9%),</mark>	<mark>193</mark>	8.84	<mark>(22.2</mark>	<mark>%),</mark>
<mark>1948</mark>	.84	<mark>(21</mark> .	<mark>.3%),</mark>	193	7.84	<mark>(21</mark> .	<mark>2%),</mark>	<mark>1952</mark>	.85	<mark>(20.8</mark>	<mark>8%),</mark>	<mark>194</mark> 9	9.84	<mark>(20.</mark>	4%),	<mark>193</mark>	1.85	<mark>(19</mark> .	3%),	<mark>195</mark>	3.85	<mark>(15.3</mark>	<mark>%),</mark>
<mark>1930</mark>	.85	<mark>(13</mark> .	<mark>.4%),</mark>	1930	5. <mark>84</mark>	<mark>(12</mark> .	<mark>.6%),</mark>	<mark>1950</mark>	.84	<mark>(12.3</mark>	<mark>3%),</mark>	<mark>195</mark> 1	1.84	<mark>(12.</mark>	1%),	<mark>195</mark> -	4.85	<mark>(10</mark> .	8%),	<mark>193</mark>	5.84	<mark>(10.8</mark>	<mark>%),</mark>
<mark>1929</mark>	.85	<mark>(8.6</mark>	<mark>%),</mark>	<mark>1955.</mark>	<mark>85</mark> (7.2%	5), <mark>1</mark> 9	<mark>52.84</mark>	(5.	<mark>8%),</mark>	<mark>193</mark> 4	1.84	<mark>(5.5</mark> 9	%),	<mark>1953.</mark>	<mark>84</mark> (<mark>5.5%</mark>), 19	9 <mark>28.8</mark> :	5 (5	.2%),	<mark>194(</mark>).86
<mark>(5.0%</mark>	<mark>6),</mark> 1	<mark>1942</mark>	2.86	<mark>(4.9%</mark>), <mark>1</mark> 9	<mark>956.</mark> 8	85 <mark>(</mark> 4	.9%),	<mark>193</mark>	<mark>3.84</mark>	(4.8	<mark>%),</mark>	<mark>1941</mark>	.86	<mark>(4.8%</mark>	6), <mark>1</mark>	<mark>939.8</mark>	<mark>36</mark> (4	<mark>4.6%)</mark>	, <mark>19</mark>	<mark>43.86</mark>	<mark>(4.6</mark>	<mark>%),</mark>
<mark>1938</mark>	.86	<mark>(4.3</mark>	<mark>%),</mark>	<mark>1944.</mark>	<mark>86</mark> (4	<mark>4.2%</mark>	5), <mark>1</mark> 9	<mark>37.86</mark>	(3.	<mark>9%),</mark>	1945	5.86	<mark>(3.9</mark> 9	%),	<mark>1936.</mark>	<mark>86</mark> (<mark>3.8%</mark>), <mark>1</mark> 9	9 <mark>46.8</mark>	<mark>6 (3</mark>	.4%),	<mark>1935</mark>	5.86
<mark>(3.1%</mark>	<mark>6),</mark> 1	<mark>1947</mark>	7.86	<mark>(3.1%</mark>), <mark>1</mark> 9	957.8	85 <mark>(</mark> 3	.0%),	<mark>192</mark>	<mark>27.85</mark>	(2.9	<mark>%),</mark>	<mark>1948</mark>	.86	<mark>(2.6%</mark>	6), <mark>1</mark>	<mark>934.</mark> 8	<mark>36</mark> (1	<mark>2.5%)</mark>	, <mark>19</mark>	<mark>54.84</mark>	(2.3	<mark>%),</mark>
<mark>1955</mark>	.84	<mark>(2.2</mark>	<mark>%),</mark>	<mark>1933.</mark>	<mark>86</mark> (.	<mark>2.1%</mark>	5), <mark>1</mark> 9	<mark>49.86</mark>	(2.	<mark>1%),</mark>	1932	2.84	<mark>(1.89</mark>	<mark>%),</mark>	<mark>1958.</mark>	<mark>85</mark> (<mark>1.8%</mark>), <mark>1</mark> 9	950.8	<mark>6 (1</mark>	.7%),	<mark>1931</mark>	<mark>84</mark>
(1.7%	6), 1	932	.86 (1.6%)	, 192	26.85	5 (1.5 ⁶	%), 19	951.8	86 (1	.4%),	193	1.86	(1.39	%), 1 <u>9</u>	959.8	<mark>35 (1</mark> .	1%)	, 1952	2.86	(1.1%	<mark>6)</mark>	

APCI-MS(+) of **3**:

Figure S3: APCI(+) mass spectrum of 3

Figure S4¹¹⁹Sn NMR of 2

Figure S5¹¹⁹Sn NMR, ⁷⁷Se NMR of 3

119Sm

3. Supplementary UV-Visible Absorption Spectroscopy Data

Figure S6 shows the UV-visible absorption spectra of compounds **2**, **3**, and LSnCl in THF

The spectra of **2** and **3** display two significant absorption bands, similar to the values of LSnCl recorded in THF solution. Unlike $(R^{Fc}Sn)_4Sn_6S_{10}]$ $[R^{Fc} =$ $CMe_2CH_2C(Me)=N-N=C(Me)Fc]$ they are slightly red shifted.^{S1} In **2** and **3** a $p(S)\rightarrow p(Sn)$ or $p(Se)\rightarrow p(Sn)$ charge transfer to the Sn-S or Sn-Se skeleton was not observed.

4. Raman data of 2 and 3

Figure S7 Resonance Raman spectra of 2 and 3 of standard samples were recorded at room temperature.

At lower wave numbers (80-900 cm⁻¹), the Raman spectra of **2** and **3** exhibit similar strong bands at 577, 574 cm⁻¹, respectively. They are the symmetric N-Sn stretching modes of the imine ligand. The Sn–S and Sn-Se stretching modes, which are IR-inactive but Raman-active, are observed at 191, 377 and 315 cm⁻¹, respectively. They are assigned to Sn–S or Sn-Se vibrations.^{S2,S3}

Figure S8 The ¹H NMR of the PCL

References

- (S1) Z.You and S. Dehnen, Inorg. Chem., 2013, 52, 12332.
- (S2) B. Krebs, S. Pohl and W. Schiwy, Angew. Chem., Int. Ed. Engl., 1970, 9, 897.
- (S3) Z. You, J. Bergunde, B. Gerke, R. Pöttegn and S. Dehnen, Inorg. Chem., 2014,

53, 12512.