Supplementary Information:

Significant differences of monooxotungsten(IV) and dioxotungsten(VI) benzenedithiolates containing two intramolecular NH····S hydrogen bonds from molybdenum analogues

Taka-aki Okamura,* Yui Omi, Manami Fujii, Miki Tatsumi and Kiyotaka Onitsuka

Department of Macromolecular Science, Graduate School of Science, Osaka University, Toyonaka, Osaka 560-0043, Japan

E-mail: tokamura@chem.sci.osaka-u.ac.jp

Table S1 Crystallographic data for $(NEt_4)_2[W^{IV}O(1,2-S_2-3-t-BuNHCOC_6H_3)_2]$ (**1-W**), $(NEt_4)_2[W^{IV}(1,2-S_2-3-t-BuNHCOC_6H_3)_3] \cdot H_2O$ (**3**·H₂O), and $(NEt_4)_2[\{W^{VI}O_2(1,2-S_2-3-t-BuNHCOC_6H_3)\}_2(\mu-O)] \cdot 2(Et_2O)$ (**4**·2(Et_2O))

	1-W	$3 \cdot H_2O$	$4 \cdot 2(Et_2O)$
empirical formula	$C_{38}H_{66}N_4O_3S_4W$	$C_{49}H_{81}N_5O_4S_6W$	$C_{46}H_{86}N_4O_9S_4W_2$
formula weight	939.04	1180.39	1335.12
color	orange	red	yellow
crystal system	orthorhombic	orthorhombic	monoclinic
a, Å	8.865(2)	21.3866(5)	17.9606(14)
b, Å	16.289(3)	18.6641(4)	8.7047(8)
<i>c</i> , Å	29.929(7)	29.515(2)	18.3212(14)
β , deg	90	90	91.438(5)
$V, Å^3$	4321.8(16)	11781.4(9)	2863.5(4)
space group	$P2_{1}2_{1}2_{1}$	$Pna2_1$	$P 2_1/c$
Z	4	8	2
$D_{\text{calc}}, \text{g/cm}^3$	1.443	1.331	1.548
F(000)	1936	4896	1348
μ (MoK α), mm ⁻¹	2.905	2.216	4.210
Scan type	ω	ω	ω
$2\theta_{\rm max}$, deg	50	50	55
No. of Reflections unique	7323	20684	6532
No. Variables	454	1172	295
residuals; $R1^a$ (I > 2 σ (I)), w $R2^b$ (all data)	0.0685, 0.1540	0.0781, 0.1503	0.0293, 0.0437
GOF	1.199	1.113	0.858

 Table S2 Raman bands of monooxo-tungsten and molybdenum complexes

Complex	$\nu(M=O)/cm^{-1}$	References
(NEt4)[W ^V O(SC ₆ F ₅) ₄]	980	This work
(NEt4)[W ^V O(SPh)4]	943 ^{<i>a</i>}	12
(NEt4)[Mo ^V O(SC ₆ F ₅)4]	982 ^{<i>a</i>}	30
(NEt4)[Mo ^v O(SPh)4]	936	38
$(NEt_4)_2[W^{IV}O(SC_6F_5)_4]$	949	This work
(HNEt3)2[Mo ^{IV} O(SC6F5)4]	927 ^{<i>a</i>}	30
^a ID are a stres		

^{*a*}IR spectra.

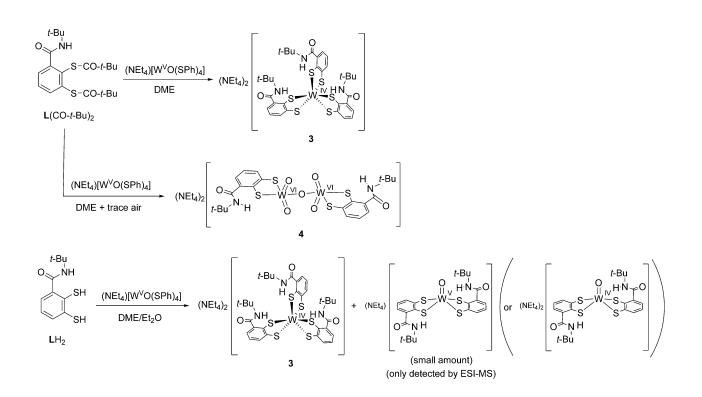
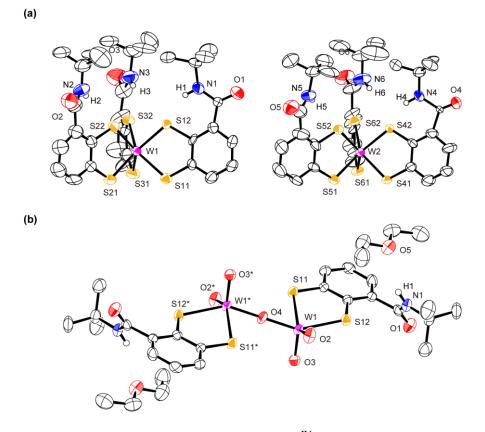

	4-H (dd)	6-H (dd)	5-H (t)	NH (br s)	SH (br s)	<i>t</i> -Bu (s)
LH_2	7.42	7.23	7.05	6.85	5.00	1.41
$(NEt_4)[LH]$	7.72	7.33	6.57	11.78	9.01	1.43
$(\operatorname{NEt}_{4})_{2}[\mathbf{L}]$	7.78	7.04	6.58	12.21		1.45

Table S3 Chemical shifts and proposed structures of LH_2 and the deprotonated forms in acetonitrile- d_3

Table S4 Contributions of NH \cdots S hydrogen bonds to W and Mo complexes

			W	Mo ^e
1-M	X-ray	$\Delta (M=O)^a/Å$	-0.012(9)	-0.001(6)
		$\Delta (M-S)^{a}/Å$	-0.028(4)0.001(4)	-0.040(2)0.003(2)
			(mean -0.012(4))	(mean -0.019(4))
	IR	$\Delta v (\text{NH})^b / \text{cm}^{-1}$	-191	-198
		$\Delta v (M=O)^{a}/cm^{-1}$	+15	+13
	CV	$\Delta E_{1/2}$ ^{<i>a</i>} /V	+0.15	+0.12
2-M	IR	$\Delta v (NH)^d / cm^{-1}$	-206	-209
	Raman	$\Delta v_{s}(M=O)^{c}/cm^{-1}$	+9	+13
		$\Delta v_{as}(M=O)^{c/cm^{-1}}$	+13	+11

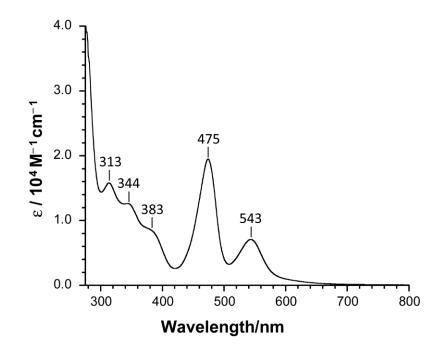
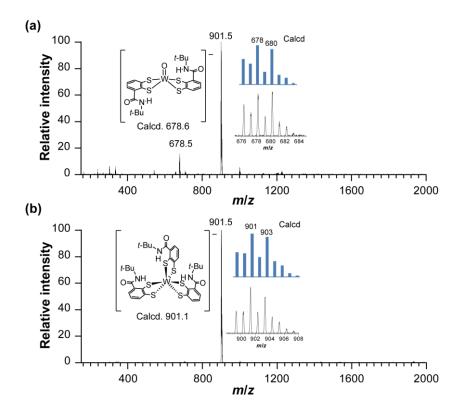
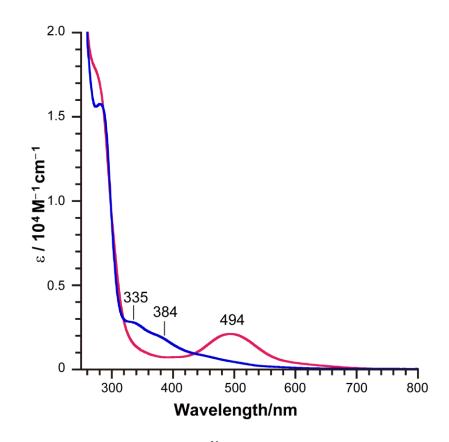

^{*a*}Difference of the values between **1-M** and (NEt₄)₂[$M^{IV}O(bdt)$] (**5-M**). (W=O, 1.727(2) Å; W–S, 2.372(4) Å for (NEt₄)₂[$W^{IV}O(bdt)_2$] (**5-W**):¹⁴ Mo=O, 1.699(6) Å; Mo–S, 2.388(2) Å for (NEt₄)₂[Mo^{IV}O(bdt)₂] (**5-Mo**).⁵⁰) ^{*b*}See Table 3. ^{*c*}Difference of the values between **2-M** and (NEt₄)₂[$M^{VI}O_2(bdt)_2$] (**6-M**). ^{*d*}See Table 4. ^{*e*}Ref. 29.

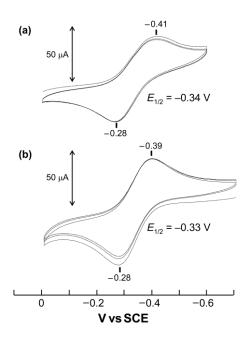
Scheme S1 Reaction of $(NEt_4)[W^VO(SPh)_4]$ with LH₂ or L(CO-*t*-Bu)₂ according to the molybdenum analogue.

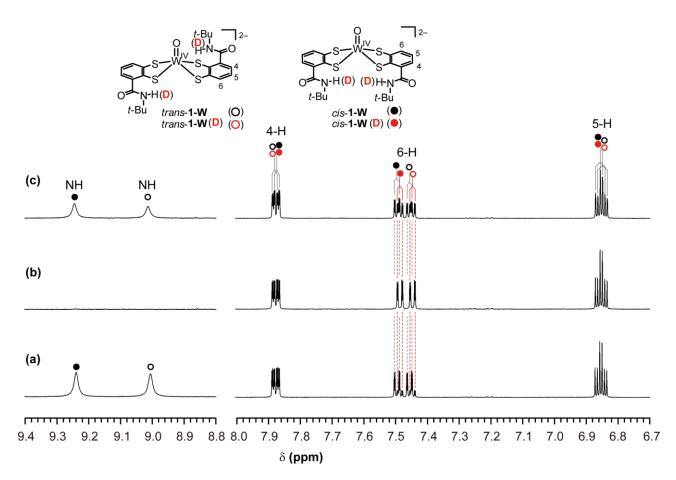
$$(\mathsf{NEt}_4)[\mathsf{W}^{\mathsf{V}}\mathsf{O}(\mathsf{SPh})_4] \xrightarrow{\mathsf{C}_6\mathsf{F}_5\mathsf{SH}} (\mathsf{NEt}_4)[\mathsf{W}^{\mathsf{V}}\mathsf{O}(\mathsf{SC}_6\mathsf{F}_5)_4] \xrightarrow{\mathsf{NEt}_4\mathsf{BH}_4} (\mathsf{NEt}_4)_2[\mathsf{W}^{\mathsf{I}\mathsf{V}}\mathsf{O}(\mathsf{SC}_6\mathsf{F}_5)_4]$$

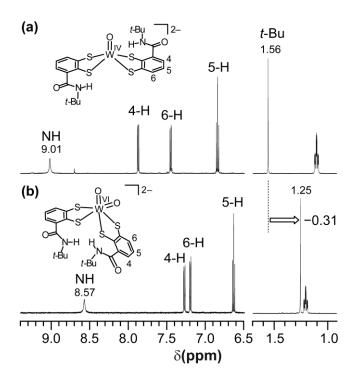
Scheme S2 Preparation of (NEt₄)₂[W^{IV}O(SC₆F₅)₄].

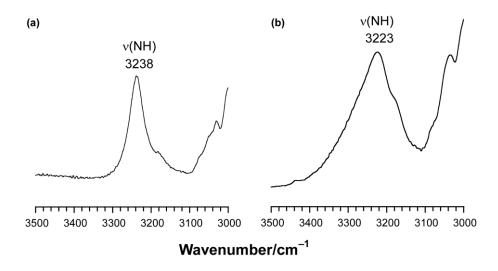
Fig. S1 Molecular structures (anion parts) of (a) $(NEt_4)_2[W^{IV}(1,2-S_2-3-t-BuNHCOC_6H_3)_3]$ (**3**) and (b) $(NEt_4)_2[\{W^{VI}O_2(1,2-S_2-3-t-BuNHCOC_6H_3)\}_2(\mu-O)]$ (**4**) in the crystal. Two molecules of **3** were found in the asymmetric unit.


Fig. S2 UV-vis spectrum of $(NEt_4)_2[W^{IV}(1,2-S_2-3-t-BuNHCOC_6H_3)_3]$ (3) in DMF.


Fig. S3 ESI-MS spectra of (a) the products in DME/Et₂O shown in Scheme S1, where the main peak was $(NEt_4)_2[W^{IV}(1,2-S_2-3-t-BuNHCOC_6H_3)_3]$ (3) and a small amount of $(NEt_4)[W^{VO}(1,2-S_2-3-t-BuNHCOC_6H_3)_2]$ was found, and (b) pure 3. The enlarged spectra were obtained in the zoom scan mode, accompanying simulated isotope patterns.


Fig. S4 UV-vis spectra of $(NE_4)[W^VO(SC_6F_5)_4]$ (red line) in acetonitrile and $(NE_4)_2[W^{IV}O(SC_6F_5)_4]$ (blue line) in DMF.


Fig. S5 Cyclic voltammograms of (a) $(NE_4)[W^VO(SC_6F_5)_4]$ and (b) $(NE_4)_2[W^{IV}O(SC_6F_5)_4]$ in DMF.

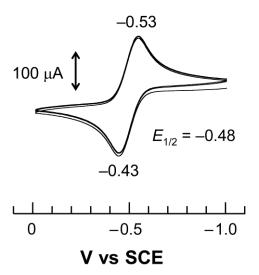

Fig. S6 ¹H NMR spectra (measured at 30 °C) of (a) (NEt₄)₂[W^{IV}O(1,2-S₂-3-*t*-BuNHCOC₆H₃)₂] (**1-W**, *trans/cis* = 1:1) containing a minute amount of NEt₄BH₄ in acetonitrile-*d*₃, (b) after heating at 50 °C for 30 min., and (c) after addition of a trace amount of H₂O. The content of (NEt₄)₂[W^{IV}O(1,2-S₂-3-*t*-BuNDCOC₆H₃)₂] (**1-W**(ND)) was increased from (a) 22% to (b) 93%, and then back to about 50% by the addition of H₂O. The 4-H and 5-H signals of **1-W** and **1-W**(ND) were found at identical chemical shifts for each isomer.

Fig. S7 ¹H NMR spectra of (a) $(NEt_4)_2[W^{IV}O(1,2-S_2-3-t-BuNHCOC_6H_3)_2]$ (**1-W**) and (b) $(NEt_4)_2[W^{VI}O_2(1,2-S_2-3-t-BuNHCOC_6H_3)_2]$ (**2-W**) in acetonitrile-*d*³ at 30 °C. The aromatic region was enlarged along vertical axis.

Fig. S8 IR spectra of (a) $(NEt_4)_2[W^{IV}O(1,2-S_2-3-t-BuNHCOC_6H_3)_2]$ (1-W) and (b) $(NEt_4)_2[W^{VI}O_2(1,2-S_2-3-t-BuNHCOC_6H_3)_2]$ (2-W) in the solid state.

Fig. S9 Cyclic voltammogram of $(NEt_4)_2[W^{IV}O(1,2-S_2-3-t-BuNHCOC_6H_3)_2]$ (1-W) in DMF.