Electronic Supplementary Material (ESI) for Dalton Transactions. This journal is © The Royal Society of Chemistry 2015

Electronic Supplementary Information

Molecular, 1D and 2D Assemblies from Hexakis(3pyridyloxy)cyclophosphazene Containing 20-membered Metallamacrocyclic Motifs

Vadapalli Chandrasekhar^{*a,b} and Ramakirushnan Suriyanarayanan

^aDepartment of Chemistry, Indian Institute of Technology, Kanpur, Kanpur 208 016, India

^bNational Institute of Science Education and Research, PO: Bhimpur, Via: Jatni, Kurdha - 752 060, India

Corresponding Author: Email: vc@iitk.ac.in; Tel: +91 512 259 7259. Fax: +91 512 259 7436.

Scheme S1. Hetero and homobimetallic compounds of 2-pyridyloxy cyclophosphazenes (References: 1) G. A. Carriedo, P. G. Elipe, F. J. G. Alonso, L. F. Catuxo, M. R. Díaz and S. G. Granda, J. Organomet. Chem., 1995, 498, 207. 2) G. A. Carriedo, F. J. G. Alonso, J. L. Garcia, R. J. Carbajo and F. L. Ortiz, Eur. J. Inorg. Chem., 1999, 1015. 3) Y. Cho, H. Baek and Y. S. Sohn, Macromolecules, 1999, 32, 2167. 4) E. W. Ainscough, A. M. Brodie and C. V. Depree, J. Chem. Soc., Dalton Trans., 1999, 4123. 5) E. W. Ainscough, A. M. Brodie, B. Moubaraki, K. S. Murray and C. A. Otter, J. Chem. Soc., Dalton Trans., 2005, 3337. 6) E. W. Ainscough, A. M. Brodie, C. V. Depree, G. B. Jameson and C. A. Otter, Inorg. Chem., 2005, 44, 7325. 7) V. Chandrasekhar, B. M. Pandian and R. Azhakar, Inorg. Chem., 2006, 45, 3510. 8) E. W. Ainscough, A. M. Brodie, A. B. Chaplin, A. Derwahl, J. A. Harrison and C. A. Otter, Inorg. Chem., 2007, 46, 2575. 9) V. Chandrasekhar, B. M. Pandian and R. Azhakar, Polyhedron, 2008, 27, 255. 10) E. W. Ainscough, A. M. Brodie, R. J. Davidson, B. Moubaraki, K. S. Murray, C. A. Otter and M. A. Waterland, Inorg. Chem., 2008, 47, 9182. 11) E. W. Ainscough, A. M. Brodie, R. J. Davison and C. A. Otter, Inorg. Chem. Commun., 2008, 11, 171. 12) E. W. Ainscough, A. M. Brodie, P. J. B. Edwards, G. B. Jameson, C. A. Otter and S. Kirk, Inorg. Chem., 2012, 51, 10884.)

Scheme S2. Synthesis of heterometallic compound $[{N_3P_3(OC_5H_4N-2)_5O}_2{CuCl}_2 {Co(NO_3)}]Cl$ (Reference: V. Chandrasekhar, B. M. Pandian and R. Azhakar, *Inorg. Chem.*, 2006, **45**, 3510)

Chart S1. *Dispiro*-{ $P_3N_3(O_2C_{12}H_8)_2O$ -*n*-($Bu_2Sn_2(\mu$ -O)(μ -OMe)}.MeOH (Reference: S. Kundu, C. Mohapatra and V. Chandrasekhar, *RSC Adv.*, 2014, 4, 53662.)

Chart S2. [${spiro-N_3P_3(O_2C_{12}H_8)(O-C_5H_4N-3)_4}$ { $ZnCl_2$ }]_n (Reference: V. Chandrasekhar and R. S. Narayanan, *Dalton Trans.*, 2013, **42**, 6619.)

Table S1. Coordination environment around the metal ions in the compounds 1-4

Compound	Environment around	Bond length (Å)	Bond angles (°)
	metal		
1	Macrocycle part	Zn(2)-O(11) 2.065(4)	O(11)-Zn(2)-O(13) 175.90(16)
	011 012 N7	Zn(2)-O(13) 2.095(4)	O(11)-Zn(2)-O(12)81.61(19)
	2n2 015 N6 N10	Zn(2)-O(12) 2.096(5)	O(13)-Zn(2)-O(12)95.93(18)
	013	Zn(2)-N(6) 2.118(5)	O(11)-Zn(2)-N(6) 92.13(18)
		Zn(2)-N(7) 2.148(5)	O(13)-Zn(2)-N(6) 91.39(18)
Octahedral-2N	Octahedral-2N, 4O	Zn(2)-O(14) 2.207(4)	O(12)-Zn(2)-N(6) 95.80(18)
			O(11)-Zn(2)-N(7) 89.06(18)
			O(13)-Zn(2)-N(7) 87.76(17)
			O(12)-Zn(2)-N(7) 92.36(19)

				N(6)-Zn(2)-N(7) 171.83(18)
				O(11)-Zn(2)-O(14)100.35(16)
				O(13)-Zn(2)-O(14)81.81(16)
				O(12)-Zn(2)-O(14) 174.50(17)
				N(6)-Zn(2)-O(14) 89.28(16)
				N(7)-Zn(2)-O(14) 82.56(17)
	Connecting part	Zn(1)-N(4) ^{#1}	2.115(5)	N(4) ^{#1} -Zn(1)-N(4) 180.0
	N4#1	Zn(1)-N(4)	2.115(5)	N(4) ^{#1} -Zn(1)-O(7) 90.5(2)
	07#1	Zn(1)-O(7)	2.137(5)	N(4)-Zn(1)-O(7) 89.5(2)
	07 N4	Zn(1)-O(7) ^{#1}	2.137(5)	$N(4)^{\#1}-Zn(1)-O(7)^{\#1}$ 89.5(2)
		Zn(1)-O(8)	2.394(10)	N(4)-Zn(1)-O(7) ^{#1} 90.5(2)
	Octahedral-2N, 4O	Zn(1)-O(8)#1 2	.394(10)	O(7)-Zn(1)-O(7) ^{#1} 180.0
				N(4) ^{#1} -Zn(1)-O(8) 90.0(2)
				N(4)-Zn(1)-O(8) 90.0(2)
				O(7)-Zn(1)-O(8) 77.4(2)
				O(7) ^{#1} -Zn(1)-O(8) 102.6(2)
				$N(4)^{\#1}$ -Zn(1)-O(8) ^{#1} 90.0(2)
				N(4)-Zn(1)-O(8) ^{#1} 90.0(2)
				O(7)-Zn(1)-O(8) ^{#1} 102.6(2)
				$O(7)^{\#1}$ -Zn(1)-O(8) ^{#1} 77.4(2)
				O(8)-Zn(1)-O(8) ^{#1} 180.0
2	Macrocycle part	Zn(1)-N(5)	2.077(5)	N(5)-Zn(1)-N(4) 176.32(18)
	o ™ . .	Zn(1)-N(4)	2.085(5)	N(5)-Zn(1)-O(8) 92.45(18)
		Zn(1)-O(8)	2.097(5)	N(4)-Zn(1)-O(8) 89.46(18)
	012 N5	Zn(1)-O(7)	2.133(4)	N(5)-Zn(1)-O(7) 89.62(18)
	Octahedral-2N, 4O	Zn(1)-O(9)	2.153(5)	N(4)-Zn(1)-O(7) 87.45(18)
		Zn(1)-O(12)	2.172(6)	O(8)-Zn(1)-O(7) 83.86(17)
				N(5)-Zn(1)-O(9) 90.48(19)

			N(4)-Zn(1)-O(9) 92.70(19)
			O(8)-Zn(1)-O(9) 89.25(19)
			O(7)-Zn(1)-O(9) 173.10(18)
			N(5)-Zn(1)-O(12) 87.27(18)
			N(4)-Zn(1)-O(12) 91.38(18)
			O(8)-Zn(1)-O(12) 170.11(18)
			O(7)-Zn(1)-O(12) 106.01(18)
			O(9)-Zn(1)-O(12) 80.88(19)
	Connecting part	Cu(1)-N(7) 2.023(5)	N(7)-Cu(1)-N(7) ^{#2} 180.0
	N7 N8#2	Cu(1)-N(7) ^{#2} 2.023(5)	N(7)-Cu(1)-N(8) ^{#2} 90.36(19)
	01592 011	Cu(1)-N(8) ^{#2} 2.025(5)	N(7)#1-Cu(1)-N(8) ^{#2} 89.64(19)
	N7#2	Cu(1)-N(8) 2.025(5)	N(7)-Cu(1)-N(8) 89.64(19)
	Octahodral AN 20	Cu(1)-O(15) 2.513(7)	N(7) ^{#2} -Cu(1)-N(8) 90.36(19)
		Cu(1)-O(15) ^{#2} 2.513(7)	N(8) ^{#2} -Cu(1)-N(8) 180.0
2	Torminal Cadmium	(1/1) $N/(11)$ $(2.204/(2))$	N(11) = O(12) = O(12) = O(12)
3		Ca(1)-N(11) 2.304(6)	N(11)-Cd(1)-O(13) 95.315(2)
5		Cd(1)-N(11) 2.304(6) Cd(1)-O(13) 2.466(5)	N(11)-Cd(1)-O(13) 95.315(2) O(13)-Cd(1)-O(14) 51.437(2)
3	013 014 N11	Cd(1)-N(11) 2.304(6) Cd(1)-O(13) 2.466(5) Cd(1)-O(14) 2.506(6)	N(11)-Cd(1)-O(13) 95.315(2) O(13)-Cd(1)-O(14) 51.437(2) O(14)-Cd(1)-N(9) 76.072(2)
5		Cd(1)-N(11) 2.304(6) Cd(1)-O(13) 2.466(5) Cd(1)-O(14) 2.506(6) Cd(1)-N(9) 2.368(6)	N(11)-Cd(1)-O(13) 95.315(2) O(13)-Cd(1)-O(14) 51.437(2) O(14)-Cd(1)-N(9) 76.072(2) N(9)-Cd(1)-N(8) 92.801(2)
5	reminar Cadmun	Cd(1)-N(11) 2.304(6) Cd(1)-O(13) 2.466(5) Cd(1)-O(14) 2.506(6) Cd(1)-N(9) 2.368(6) Cd(1)-N(8) 2.333(5)	N(11)-Cd(1)-O(13) 95.315(2) O(13)-Cd(1)-O(14) 51.437(2) O(14)-Cd(1)-N(9) 76.072(2) N(9)-Cd(1)-N(8) 92.801(2) N(8)-Cd(1)-O(16) 78.954(2)
5	Pentagonalbipyramid	Cd(1)-N(11) 2.304(6) Cd(1)-O(13) 2.466(5) Cd(1)-O(14) 2.506(6) Cd(1)-N(9) 2.368(6) Cd(1)-N(8) 2.333(5) Cd(1)-O(16) 2.472(6)	N(11)-Cd(1)-O(13) 95.315(2) O(13)-Cd(1)-O(14) 51.437(2) O(14)-Cd(1)-N(9) 76.072(2) N(9)-Cd(1)-N(8) 92.801(2) N(8)-Cd(1)-O(16) 78.954(2) O(16)-Cd(1)-N(10) 80.963(2)
5	Pentagonalbipyramid N4, O3	Cd(1)-N(11) 2.304(6) Cd(1)-O(13) 2.466(5) Cd(1)-O(14) 2.506(6) Cd(1)-N(9) 2.368(6) Cd(1)-N(8) 2.333(5) Cd(1)-O(16) 2.472(6) Cd(1)-N(10) 2.418(6)	N(11)-Cd(1)-O(13) 95.315(2) O(13)-Cd(1)-O(14) 51.437(2) O(14)-Cd(1)-N(9) 76.072(2) N(9)-Cd(1)-N(8) 92.801(2) N(8)-Cd(1)-O(16) 78.954(2) O(16)-Cd(1)-N(10) 80.963(2) N(10)-Cd(1)-N(1) 92.368(2)
5	Pentagonalbipyramid N4, O3	Cd(1)-N(11) 2.304(6) Cd(1)-O(13) 2.466(5) Cd(1)-O(14) 2.506(6) Cd(1)-N(9) 2.368(6) Cd(1)-N(8) 2.333(5) Cd(1)-O(16) 2.472(6) Cd(1)-N(10) 2.418(6) Cd(2)-N(13) 2.363(6)	N(11)-Cd(1)-O(13) 95.315(2) O(13)-Cd(1)-O(14) 51.437(2) O(14)-Cd(1)-N(9) 76.072(2) N(9)-Cd(1)-N(8) 92.801(2) N(8)-Cd(1)-O(16) 78.954(2) O(16)-Cd(1)-N(10) 80.963(2) N(10)-Cd(1)-N(1) 92.368(2) N(13)-Cd(2)-O(17) 94.556(2)
5	Pentagonalbipyramid N4, O3	Cd(1)-N(11) 2.304(6) Cd(1)-O(13) 2.466(5) Cd(1)-O(14) 2.506(6) Cd(1)-N(9) 2.368(6) Cd(1)-N(8) 2.333(5) Cd(1)-O(16) 2.472(6) Cd(1)-N(10) 2.418(6) Cd(2)-N(13) 2.363(6) Cd(2)-O(17) 2.526(5)	N(11)-Cd(1)-O(13) 95.315(2) O(13)-Cd(1)-O(14) 51.437(2) O(14)-Cd(1)-N(9) 76.072(2) N(9)-Cd(1)-N(8) 92.801(2) N(8)-Cd(1)-O(16) 78.954(2) O(16)-Cd(1)-N(10) 80.963(2) N(10)-Cd(1)-N(1) 92.368(2) N(13)-Cd(2)-O(17) 94.556(2) O(17)-Cd(2)-O(22) 104.131(2)
5	Pentagonalbipyramid N4, O3	Cd(1)-N(11) 2.304(6) Cd(1)-O(13) 2.466(5) Cd(1)-O(14) 2.506(6) Cd(1)-N(9) 2.368(6) Cd(1)-N(8) 2.333(5) Cd(1)-O(16) 2.472(6) Cd(1)-N(10) 2.418(6) Cd(2)-N(13) 2.363(6) Cd(2)-O(17) 2.526(5) Cd(2)-O(22) 2.235(5)	N(11)-Cd(1)-O(13) 95.315(2) O(13)-Cd(1)-O(14) 51.437(2) O(14)-Cd(1)-N(9) 76.072(2) N(9)-Cd(1)-N(8) 92.801(2) N(8)-Cd(1)-O(16) 78.954(2) O(16)-Cd(1)-N(10) 80.963(2) N(10)-Cd(1)-N(1) 92.368(2) N(13)-Cd(2)-O(17) 94.556(2) O(17)-Cd(2)-O(22) 104.131(2) O(22)-Cd(2)-O(19) 113.485(2)
5	Pentagonalbipyramid N4, O3	Cd(1)-N(11) 2.304(6) Cd(1)-O(13) 2.466(5) Cd(1)-O(14) 2.506(6) Cd(1)-N(9) 2.368(6) Cd(1)-N(8) 2.333(5) Cd(1)-O(16) 2.472(6) Cd(1)-N(10) 2.418(6) Cd(2)-N(13) 2.363(6) Cd(2)-O(17) 2.526(5) Cd(2)-O(22) 2.235(5) Cd(2)-O(19) 2.261(6)	N(11)-Cd(1)-O(13) 95.315(2) O(13)-Cd(1)-O(14) 51.437(2) O(14)-Cd(1)-N(9) 76.072(2) N(9)-Cd(1)-N(8) 92.801(2) N(8)-Cd(1)-O(16) 78.954(2) O(16)-Cd(1)-N(10) 80.963(2) N(10)-Cd(1)-N(1) 92.368(2) N(13)-Cd(2)-O(17) 94.556(2) O(17)-Cd(2)-O(22) 104.131(2) O(22)-Cd(2)-O(19) 113.485(2) O(19)-Cd(2)-O(25) 99.930(2)
5	Pentagonalbipyramid N4, O3 Center Cadmium	Cd(1)-N(11) 2.304(6) Cd(1)-O(13) 2.466(5) Cd(1)-O(14) 2.506(6) Cd(1)-N(9) 2.368(6) Cd(1)-N(8) 2.333(5) Cd(1)-O(16) 2.472(6) Cd(1)-N(10) 2.418(6) Cd(2)-N(13) 2.363(6) Cd(2)-O(17) 2.526(5) Cd(2)-O(22) 2.235(5) Cd(2)-O(19) 2.261(6) Cd(2)-O(25) 2.548(7)	N(11)-Cd(1)-O(13) 95.315(2) O(13)-Cd(1)-O(14) 51.437(2) O(14)-Cd(1)-N(9) 76.072(2) N(9)-Cd(1)-N(8) 92.801(2) N(8)-Cd(1)-O(16) 78.954(2) O(16)-Cd(1)-N(10) 80.963(2) N(10)-Cd(1)-N(1) 92.368(2) N(13)-Cd(2)-O(17) 94.556(2) O(17)-Cd(2)-O(22) 104.131(2) O(22)-Cd(2)-O(19) 113.485(2) O(19)-Cd(2)-O(25) 99.930(2) O(25)-Cd(2)-N(14) 76.148(2)
5	Terminal Cadinum $\int_{N_{10}}^{O_{14}} \int_{O_{16}}^{O_{14}} \int_{N_{16}}^{O_{14}} \int_{N_{16}}^{O_{14}}$ Pentagonalbipyramid N4, O3 Center Cadmium $\int_{O_{17}}^{O_{22}} \int_{O_{19}}^{O_{25}} \int_{N_{13}}^{O_{25}} \int_{N_{14}}^{O_{25}}$ Octahedral-2N, 4O	Cd(1)-N(11) 2.304(6) Cd(1)-O(13) 2.466(5) Cd(1)-O(14) 2.506(6) Cd(1)-N(9) 2.368(6) Cd(1)-N(8) 2.333(5) Cd(1)-O(16) 2.472(6) Cd(1)-N(10) 2.418(6) Cd(2)-N(13) 2.363(6) Cd(2)-O(17) 2.526(5) Cd(2)-O(17) 2.526(5) Cd(2)-O(19) 2.261(6) Cd(2)-O(25) 2.548(7) Cd(2)-N(14) 2.332(5)	N(11)-Cd(1)-O(13) 95.315(2) O(13)-Cd(1)-O(14) 51.437(2) O(14)-Cd(1)-N(9) 76.072(2) N(9)-Cd(1)-N(8) 92.801(2) N(8)-Cd(1)-O(16) 78.954(2) O(16)-Cd(1)-N(10) 80.963(2) N(10)-Cd(1)-N(1) 92.368(2) N(13)-Cd(2)-O(17) 94.556(2) O(17)-Cd(2)-O(22) 104.131(2) O(22)-Cd(2)-O(19) 113.485(2) O(19)-Cd(2)-O(25) 99.930(2) O(25)-Cd(2)-N(14) 76.148(2) N(14)-Cd(2)-N(13) 89.450(2)

4		Cd(1)-O(10) 2.313(6)	N(4)-Cd(1)-O(11) 92.6(3)
	9 011	Cd(1)-O(11) 2.295(8)	N(4)-Cd(1)-N(5) 178.1(2)
	N5O10	Cd(1)-N(4) 2.290(7)	O(11)-Cd(1)-N(5) 89.3(3)
		Cd(1)-N(5) 2.307(6)	N(4)-Cd(1)-O(10) 90.8(2)
	01 01 013	Cd(1)-O(12) 2.361(7)	O(11)-Cd(1)-O(10)82.9(3)
	Pentagonalbipyramid	Cd(1)-O(13) 2.384(6)	N(5)-Cd(1)-O(10) 89.6(2)
	2N, 50		N(4)-Cd(1)-O(12) 92.6(2)
			O(11)-Cd(1)-O(12)85.1(3)
			N(5)-Cd(1)-O(12) 87.4(2)
			O(10)-Cd(1)-O(12)167.7(2)
			N(4)-Cd(1)-O(13) 88.1(2)
			O(11)-Cd(1)-O(13)160.7(3)
			N(5)-Cd(1)-O(13) 90.0(2)
			O(10)- $Cd(1)$ - $O(13)$ 116 3(2)
			O(10) Cd(1) O(13) T10.5(2)
			O(12)-O(1)-O(13)/3.0(2)

Symmetry transformations used to generate equivalent atoms:

#1 -x+1, -y+1, -z+1, #2 -x+1, -y+1, -z+1

Compound	P-N and P-O bond distance (Å)		P-N-P and N-P-N bond angle (°)
\mathbf{L}^1	P(1)-N(1) 1.568(3)	P(1)-O(1) 1.579(2)	N(1)-P(1)-N(3) 117.3(3)
	P(1)-N(3) 1.574(3)	P(1)-O(2) 1.584(2)	N(1)-P(2)-N(2) 118.20(13)
	P(2)-N(1) 1.569(3)	P(2)-O(3) 1.577(2)	N(3)-P(3)-N(2) 117.24(13)
	P(2)-N(2) 1.574(3)	P(2)-O(4) 1.583(2)	P(1)-N(1)-P(2) 122.5(2)
	P(3)-N(2) 1.575(3)	P(3)-O(5) 1.572(2)	P(2)-N(2)-P(3) 122.4(2)
	P(3)-N(3) 1.577(3)	P(3)-O(6) 1.575(2)	P(3)-N(3)-P(1) 121.8(2)

	P(1)-N(1) 1.581(5)	O(1)-P(1) 1.588(4)	N(1)-P(1)-N(3) 117.5(3)
1	P(1)-N(3) 1.573(5)	O(2)-P(1) 1.594(5)	N(1)-P(2)-N(2) 117.9(3)
	P(2)-N(1) 1.585(5)	O(3)-P(2) 1.589(5)	N(3)-P(3)-N(2) 118.5(3)
	P(2)-N(2) 1.579(5)	O(4)-P(2) 1.595(4)	P(1)-N(1)-P(2) 121.4(3)
	P(3)-N(2) 1.580(5)	O(5)-P(3) 1.572(5)	P(2)-N(2)-P(3) 120.8(3)
	P(3)-N(3) 1.571(5)	O(6)-P(3) 1.589(5)	P(3)-N(3)-P(1) 122.2(3)
	P(1)-N(1) 1.571(6)	O(1)-P(1) 1.583(4)	N(1)-P(1)-N(3) 117.8(3)
2	P(1)-N(3) 1.579(6)	O(2)-P(1) 1.592(4)	N(1)-P(2)-N(2) 115.7(3)
	P(2)-N(1) 1.590(6)	O(3)-P(2) 1.589(4)	N(3)-P(3)-N(2) 118.5(3)
	P(2)-N(2) 1.586(6)	O(4)-P(2) 1.584(4)	P(1)-N(1)-P(2) 122.4(3)
	P(3)-N(2) 1.569(6)	O(5)-P(3) 1.600(4)	P(2)-N(2)-P(3) 121.7(3)
	P(3)-N(3) 1.581(6)	O(6)-P(3) 1.576(6)	P(3)-N(3)-P(1) 120.1(3)
	P(1)-N(1) 1.583(5)	O(1)-P(1) 1.583(4)	N(1)-P(1)-N(3) 116.3(3)
3	P(1)-N(3) 1.584(5)	O(2)-P(1) 1.586(4)	N(1)-P(2)-N(2) 117.1(3)
	P(2)-N(1) 1.572(5)	O(3)-P(2) 1.581(4)	N(3)-P(3)-N(2) 117.5(3)
	P(2)-N(2) 1.586(5)	O(4)-P(2) 1.590(4)	P(1)-N(1)-P(2) 122.0(3)
	P(3)-N(2) 1.582(5)	O(5)-P(3) 1.586(4)	P(2)-N(2)-P(3) 119.4(3)
	P(3)-N(3) 1.573(5)	O(6)-P(3) 1.579(4)	P(3)-N(3)-P(1) 120.2(3)
	P(1)-N(1) 1.577(6)	O(1)-P(1) 1.602(5)	N(1)-P(1)-N(3) 119.1(3)
4	P(1)-N(3) 1.585(6)	O(2)-P(1) 1.582(5)	N(1)-P(2)-N(2) 115.6(3)
	P(2)-N(1) 1.590(6)	O(3)-P(2) 1.578(5)	N(3)-P(3)-N(2) 118.5(3)
	P(2)-N(2) 1.581(6)	O(4)-P(2) 1.582(5)	P(1)-N(1)-P(2) 122.0(4)
	P(3)-N(2) 1.583(7)	O(5)-P(3) 1.572(5)	P(2)-N(2)-P(3) 121.0(4)
	P(3)-N(3) 1.598(6)	O(6)-P(3) 1.584(5)	P(3)-N(3)-P(1) 118.5(4)

Reference:

1) Y. Cho, H. Baek and Y. S. Sohn, *Macromolecules*, 1999, **32**, 2167.

Table S3. Mean plane data for compounds 1 to 4

	Distance from the mean plane (Å)			
	1	2	3	4
P1	0.012	-0.125	-0.057	0.128

P2	0.089	0.080	-0.080	-0.068
P3	-0.046	0.051	0.188	-0.073
N1	-0.084	0.048	0.156	-0.066
N2	-0.025	-0.131	-0.092	0.139
N3	0.053	0.078	-0.115	0.061

Table S4. Olex-2 mask details:

Compound	Masked electron count	Calculated solvent
4	151	MeOH, 2H ₂ O (152)

Figure S1. ESI-MS (a) experimental and (b) calculated spectra for the fragment ion [$\{N_3P_3(O-C_5H_4N-3)_6 \{Zn(NO_3)_2\} \{Cu(NO_3)_2\}$]

Figure S2: EPR spectrum of compound 2 in DMF-toluene glass at -120 °C

Figure S3. A representation of the double helix like 1D coordination polymer **2**. Hydrogen atoms, non-coordinating pyridyloxy groups, coorninated water and nitrate anions are omitted for clarity

Figure S4. 12 membered metallamacrocycle found in compound **3 (1L; 2 non-gem pyridyloxy + 1Cd): LM**

Figure S5. 16- membered metallamacrocycle found in compound 3

LM₂ (two non-gem pyridyloxy coordinate to two separate Cds. The latter are connected by bridging of nitrate, O-N-O)

Figure S6. 20-membered metallamacrocycle found in compound 3

L2M2(A pair of geminal pyridyloxy nirogens)

Figure S7. 24 membered metallamacrocycle in compound **3** L2M2 (A pair of non-geminal pyridyloxy groups)

Figure S8. 12, 16, 20 and 24 membered metallamacrocycles in compound 3

Figure S9. A view of the 26 membered metallamacrocycle L2M3 (A pair of geminal and non-gem pyridyloxy groups coordinating to two different Cd centers; these are further connected to two other Cds through a nitrate groups: O-N-O)

Figure S10. 32 membered metallamacrocycle in compound **3**. L2M4 (two pairs of non-gem pyridyloxy groups coordinating to two different Cd centers; these are further connected to two other Cds through two nitrate groups: O-N-O)

Figure S11: TGA curves for compounds L, 1 to 4

Figure S12. Thermal ellipsoid plot (50 % probability) of asymmetric unit of Compound 1

Figure S13. Thermal ellipsoid plot (50 % probability) of asymmetric unit of Compound **2** (other disordered part of the non-coordinating nitrate anions are omitted for clarity)

Figure S14. Thermal ellipsoid plot (50 % probability) of asymmetric unit of Compound 3

Figure S15. Thermal ellipsoid plot (50 % probability) of asymmetric unit of Compound 4