SUPPLEMENTARY INFORMATION

Narrowing the gap: From semiconductor to semimetal in the homologous series of rare-earth zinc arsenides $RE_{2-y}Zn_4As_4 \cdot n(REAs)$ and Mn-substituted derivatives $RE_{2-y}Mn_xZn_{4-x}As_4 \cdot n(REAs)$ (RE = La-Nd, Sm, Gd)

Xinsong Lin, Danisa Tabassum, and Arthur Mar*-

Department of Chemistry, University of Alberta, Edmonton, Alberta, Canada T6G 2G2

Table S1. EDX analyses of $RE_{2-y}Mn_xZn_{4-x}As_4 \cdot n(REAs)$ (RE = La-Nd, Sm, Gd; n = 2, 3, 4) crystals.

Table S2. Crystallographic data for $RE_{2-y}Mn_xZn_{4-x}As_4 \cdot n(REAs)$ (n = 2, 3, 4).

Table S3. Atomic coordinates and equivalent isotropic displacement parameters for $RE_{2-y}Mn_xZn_{4-x}As_4 \cdot n(REAs)$ (n = 2, 3, 4).

Table S4. Interatomic distances (Å) for $RE_{2-y}Mn_xZn_{4-x}As_4 \cdot n(REAs)$ (n = 2, 3, 4).

Figure S1. Powder XRD patterns for $RE_{4-\nu}Zn_4As_6$ (RE = La-Nd).

Figure S2. Powder XRD patterns for $RE_{5-\gamma}Zn_4As_7$ (RE = Pr, Nd, Sm, Gd).

Figure S3. Powder XRD patterns for $RE_{6-\nu}Zn_4As_8$ (*RE* = La–Nd, Sm, Gd).

^{*} Department of Chemistry, University of Alberta, Edmonton, Alberta, Canada T6G 2G2. E-mail: arthur.mar@ualberta.ca; Fax: +1-780-492-8231

Compound	No. of analyses	at. % <i>RE</i>	at. % Mn	at. % Zn	at. % As
$Ce_{3,3}Mn_{1,1}Zn_{2,9}As_6$	16	25(1) 25	13(1) 8	20(2) 22	41(2) <i>45</i>
$Pr_{3.5}Zn_4As_6$	16	29(1) 26		30(2) <i>30</i>	41(2) <i>44</i>
$Nd_{3.3}Mn_{0.9}Zn_{3.1}As_6$	15	25(2) 25	4(1) 7	28(1) 23	44(3) <i>45</i>
$Nd_{4.4}Zn_4As_7$	19	31(1) 29		26(1) 26	43(1) 45
$Sm_{4.4}Zn_4As_7$	16	33(2) 29		26(2) 26	41(2) <i>45</i>
$Nd_{5.4}Zn_4As_8\\$	16	30(1) <i>31</i>		23(1) 23	47(1) 46
$Sm_{5.4}Zn_4As_8$	15	35(1) 31		22(1) 23	43(1) 46
$Sm_{5.3}Mn_{0.6}Zn_{3.4}As_8$	16	35(2) 31	5(1) 3	20(1) 20	40(3) 46
$Gd_{5.3}Mn_{0.6}Zn_{3.4}As_8$	16	34(1) <i>31</i>	6(1) <i>3</i>	17(1) 20	42(2) 46

Table S1. EDX analyses of $RE_{2-y}Mn_xZn_{4-x}As_4 \cdot n(REAs)$ (RE = La-Nd, Sm, Gd; n = 2, 3, 4) crystals.^{*a*}

^{*a*} Expected compositions are indicated in italics.

Formula	$Ce_{3.32(1)}Mn_{1.1(1)}Zn_{2.9(1)}As_6$	Pr _{3.46(1)} Zn ₄ As ₆	$Nd_{3.34(1)}Mn_{0.92(6)}Zn_{3.08(6)}As_{6}$	Nd _{4.41(1)} Zn ₄ As ₇	Sm _{4.39(1)} Zn ₄ As ₇	
Formula mass (amu)	1162.27	1197.14	1182.07	1420.58	1447.46	
Space group	<i>R</i> 3 <i>m</i> 1 (No. 166)	<i>R</i> 3 <i>m</i> 1 (No. 166)	<i>R</i> 3 <i>m</i> 1 (No. 166)	<i>P</i> 3 <i>m</i> 1 (No. 164)	<i>P</i> 3 <i>m</i> 1 (No. 164)	
<i>a</i> (Å)	4.218(3)	4.2067(7)	4.1788(7)	4.197(3)	4.1703(6)	
<i>c</i> (Å)	62.11(4)	62.637(10)	61.727(10)	24.204(15)	23.981(3)	
$V(Å^3)$	957.0(13)	959.9(4)	933.5(3)	369.2(5)	361.19(12)	
Ζ	3	3	3	1	1	
$ ho_{ m calcd} ({ m g \ cm^{-3}})$	6.050	6.213	6.308	6.390	6.654	
Crystal dimensions (mm)	$0.05 \times 0.03 \times 0.02$	$0.09 \times 0.04 \times 0.02$	$0.04 \times 0.03 \times 0.02$	$0.08 \times 0.05 \times 0.03$	$0.06 \times 0.06 \times 0.02$	
Radiation	graphite monochromated Mo $K\alpha$, $\lambda = 0.71073$ Å					
μ (Mo $K\alpha$) (mm ⁻¹)	33.34	35.57	36.14	37.49	39.96	
Transmission factors	0.277-0.519	0.176-0.558	0.334-0.636	0.153-0.452	0.207-0.453	
2θ limits	3.93–51.16°	3.90-66.47°	3.96–66.35°	3.37–66.26°	3.40-66.44°	
Data collected	$-5 \le h \le 5,$	$-6 \le h \le 6,$	$-6 \le h \le 6,$	$-6 \le h \le 6,$	$-6 \le h \le 6,$	
	$-5 \le k \le 5,$	$-6 \le k \le 6,$	$-6 \le k \le 6,$	$-6 \le k \le 5,$	$-6 \le k \le 6,$	
	$-75 \leq l \leq 75$	$-94 \le l \le 95$	$-93 \le l \le 93$	$-36 \le l \le 36$	$-36 \le l \le 36$	
No. of data collected	2373	4546	4476	4144	5171	
No. of unique data, including $F_0^2 < 0$	297 ($R_{\rm int} = 0.080$)	564 ($R_{\rm int} = 0.031$)	546 ($R_{\rm int} = 0.049$)	647 ($R_{\rm int} = 0.055$)	$631 (R_{\rm int} = 0.042)$	
No. of unique data, with $F_o^2 > 2\sigma(F_o^2)$	216	509	440	480	544	
No. of variables	27	27	28	30	30	
$R(F)$ for $F_{o}^{2} > 2\sigma(F_{o}^{2})^{a}$	0.032	0.021	0.026	0.029	0.028	

Table S2. Crystallographic data for $RE_{2-y}Mn_xZn_{4-x}As_4 \cdot n(REAs)$ (n = 2, 3, 4).

$R_{\rm w}(F_{\rm o}^2)^{\rm b}$	0.058	0.045	0.056	0.051	0.067
Goodness of fit	1.06	1.16	1.08	1.06	1.11
$(\Delta \rho)_{\rm max}, (\Delta \rho)_{\rm min} ({\rm e}{\rm \AA}^{-3})$	1.74, -1.58	3.60, -2.78	2.05, -2.88	2.75, -3.55	4.07, -3.34
Formula	$Nd_{5.43(1)}Zn_4As_8\\$	$Sm_{5.40(1)}Zn_4As_8$	$Sm_{5.33(1)}Mn_{0.58(1)}Zn_{3.42(1)}As_8$	$Gd_{5.27(1)}Mn_{0.62(1)}Zn_{3.38(1)}As_8$	
Formula mass (amu)	1644.54	1672.73	1656.80	1682.59	
Space group	<i>R</i> 3 <i>m</i> 1 (No. 166)	<i>R</i> 3 <i>m</i> 1 (No. 166)	<i>R</i> 3 <i>m</i> 1 (No. 166)	<i>R</i> 3 <i>m</i> 1 (No. 166)	
a (Å)	4.2038(11)	4.1689(4)	4.1691(9)	4.1398(12)	
<i>c</i> (Å)	82.97(2)	82.103(9)	81.965(17)	81.17(2)	
$V(\text{\AA}^3)$	1269.8(7)	1235.8(3)	1233.8(6)	1204.8(8)	
Ζ	3	3	3	3	
$ ho_{ m calcd} ({ m g \ cm}^{-3})$	6.452	6.743	6.690	6.957	
Crystal dimensions (mm)	$0.05 \times 0.04 \times 0.03$	0.06 × 0.06 × 0.03	0.06 × 0.04 × 0.01	$0.05 \times 0.04 \times 0.02$	
Radiation		graphite i	monochromated Mo $K\alpha$, $\lambda =$	0.71073 Å	
μ (Mo $K\alpha$) (mm ⁻¹)	37.38	40.53	39.97	43.15	
Transmission factors	0.284-0.411	0.127-0.406	0.238-0.675	0.261-0.499	
2θ limits	2.95-66.23°	2.98-66.04°	2.98–66.53°	4.52–66.31°	
Data collected	$-6 \le h \le 6,$	$-6 \le h \le 6,$	$-6 \le h \le 6,$	$-6 \le h \le 6,$	
	$-6 \le k \le 6,$	$-6 \le k \le 6,$	$-6 \le k \le 6,$	$-6 \le k \le 6,$	
	$-123 \le l \le 124$	$-123 \le l \le 123$	$-124 \le l \le 124$	$-123 \le l \le 123$	
No. of data collected	5860	5971	6025	5634	
No. of unique data, including $F_0^2 < 0$	741 ($R_{\rm int} = 0.066$)	715 ($R_{\rm int} = 0.038$)	726 ($R_{\rm int} = 0.039$)	705 ($R_{\rm int} = 0.051$)	
No. of unique data, with $F_o^2 > 2\sigma(F_o^2)$	530	595	621	568	

No. of variables	33	33	33	32
$R(F)$ for $F_{o}^{2} > 2\sigma(F_{o}^{2})^{a}$	0.040	0.026	0.025	0.033
$R_{\rm w}(F_{\rm o}^{2})^{\rm b}$	0.094	0.053	0.053	0.088
Goodness of fit	1.08	1.12	1.11	1.09
$(\Delta \rho)_{\rm max}, (\Delta \rho)_{\rm min} ({\rm e}{\rm \AA}^{-3})$	4.37, -3.72	2.46, -3.53	2.33, -3.34	3.99, -5.18

^a $R(F) = \sum ||F_{o}| - |F_{c}|| / \sum |F_{o}|.$

^b $R_{\rm w}(F_{\rm o}^{2}) = \left[\sum [w(F_{\rm o}^{2} - F_{\rm c}^{2})^{2}] / \sum wF_{\rm o}^{4}\right]^{1/2}; \ w^{-1} = [\sigma^{2}(F_{\rm o}^{2}) + (Ap)^{2} + Bp], \text{ where } p = \left[\max(F_{\rm o}^{2}, 0) + 2F_{\rm c}^{2}\right] / 3.$

Atom	Wyckoff position	Occupancy	<i>x</i>	у	Z	$U_{\rm eq}$ (Å ²) ^a
Ce _{3.32(1)} M	$n_{1.1(1)}Zn_{2.9(1)}As_6$					
Ce1	6 <i>c</i>	1	0	0	0.39010(2)	0.0187(4)
Ce2	3 <i>b</i>	0.323(9)	0	0	1/2	0.038(3)
Ce3	3 <i>a</i>	1	0	0	0	0.0170(5)
M1a	6 <i>c</i>	0.721(7) Zn	0	0	0.13028(8)	0.0332(13)
<i>M</i> 1b	6 <i>c</i>	0.279(7) Mn	0	0	0.1478(3)	0.0332(13)
М2	6 <i>c</i>	0.75(6) Zn, 0.25(6) Mn	0	0	0.23276(5)	0.0265(13)
Asl	6 <i>c</i>	1	0	0	0.08679(4)	0.0186(6)
As2	6 <i>c</i>	1	0	0	0.19204(5)	0.0271(7)
As3	6 <i>c</i>	1	0	0	0.30451(4)	0.0173(6)
Pr _{3.46(1)} Zn	$_4As_6$					
Pr1	6 <i>c</i>	1	0	0	0.38893(2)	0.0079(1)
Pr2	3 <i>b</i>	0.461(3)	0	0	1/2	0.0105(3)
Pr3	3 <i>a</i>	1	0	0	0	0.0072(1)
M1a	6 <i>c</i>	0.879(3) Zn	0	0	0.12902(2)	0.0237(3)
<i>M</i> 1b	6 <i>c</i>	0.121(3) Zn	0	0	0.14966(15)	0.0237(3)
М2	6 <i>c</i>	1 Zn	0	0	0.23482(2)	0.0165(2)
As1	6 <i>c</i>	1	0	0	0.08505(2)	0.0088(2)
As2	6 <i>c</i>	1	0	0	0.19442(2)	0.0116(2)
As3	6 <i>c</i>	1	0	0	0.30502(2)	0.0079(1)
Nd _{3.34(1)} M	$[n_{0.92(6)}Zn_{3.08(6)}A]$	s ₆				
Nd1	6 <i>c</i>	1	0	0	0.38917(2)	0.0106(1)
Nd2	3 <i>b</i>	0.339(4)	0	0	1/2	0.0234(8)
Nd3	3 <i>a</i>	1	0	0	0	0.0092(2)
M1a	6 <i>c</i>	0.722(4) Zn	0	0	0.12967(3)	0.0259(5)
<i>M</i> 1b	6 <i>c</i>	0.279(4) Mn	0	0	0.14757(12)	0.0259(5)
М2	6 <i>c</i>	0.82(3) Zn, 0.18(3) Mn	0	0	0.23396(2)	0.0186(4)
As1	6 <i>c</i>	1	0	0	0.08504(2)	0.0119(2)
As2	6 <i>c</i>	1	0	0	0.19321(2)	0.0169(2)
As3	6 <i>c</i>	1	0	0	0.30506(2)	0.0097(2)
$Nd_{4.41(1)}Z_{1}$	n_4As_7					
Nd1	2 <i>d</i>	1	1/3	2/3	0.07145(2)	0.0072(1)
Nd2	2c	1	0	0	0.21498(2)	0.0082(1)

Table S3. Atomic coordinates and equivalent isotropic displacement parameters for $RE_{2-y}Mn_xZn_{4-x}As_4 \cdot n(REAs)$ (n = 2, 3, 4).

Nd3	1 <i>b</i>	0.410(4)	0	0	1/2	0.0112(6)
Mla	2d	0.830(4) Zn	1/3	2/3	0.40538(10)	0.0279(5)
Mlb	2d	0.170(4) Zn	1/3	2/3	0.4550(5)	0.0279(5)
М2	2d	1 Zn	1/3	2/3	0.67457(6)	0.0169(3)
As1	2d	1	1/3	2/3	0.28933(5)	0.0087(2)
As2	2d	1	1/3	2/3	0.57088(5)	0.0116(2)
As3	2d	1	1/3	2/3	0.85542(4)	0.0067(2)
As4	1 <i>a</i>	1	0	0	0	0.0067(3)
Sm _{4.39(1)} 2	Zn_4As_7					
Sm1	2d	1	1/3	2/3	0.07017(2)	0.0085(1)
Sm2	2c	1	0	0	0.21375(2)	0.0094(1)
Sm3	1 <i>b</i>	0.385(4)	0	0	1/2	0.0127(6)
Mla	2 <i>d</i>	0.804(4) Zn	1/3	2/3	0.40566(10)	0.0313(5)
<i>M</i> 1b	2 <i>d</i>	0.196(4) Zn	1/3	2/3	0.4551(4)	0.0313(5)
М2	2 <i>d</i>	1 Zn	1/3	2/3	0.67521(6)	0.0183(3)
Asl	2d	1	1/3	2/3	0.28737(4)	0.0101(2)
As2	2d	1	1/3	2/3	0.57084(5)	0.0135(2)
As3	2d	1	1/3	2/3	0.85646(4)	0.0083(2)
As4	1 <i>a</i>	1	0	0	0	0.0082(3)
Nd _{5.43(1)} Z	Zn ₄ As ₈					
Nd1	6 <i>c</i>	1	0	0	0.29167(2)	0.0072(2)
Nd2	6 <i>c</i>	1	0	0	0.41684(2)	0.0084(2)
Nd3	3 <i>b</i>	0.429(5)	0	0	1/2	0.0088(7)
Nd4	3 <i>a</i>	1	0	0	0	0.0069(2)
<i>M</i> 1	6 <i>c</i>	1 Zn	0	0	0.11573(2)	0.0182(5)
M2a	6 <i>c</i>	0.848(5) Zn	0	0	0.19440(4)	0.0268(7)
M2b	6 <i>c</i>	0.152(5) Zn	0	0	0.1799(2)	0.0268(7)
Asl	6 <i>c</i>	1	0	0	0.06309(2)	0.0071(3)
As2	6 <i>c</i>	1	0	0	0.14598(2)	0.0121(3)
As3	6 <i>c</i>	1	0	0	0.22807(2)	0.0092(3)
As4	6 <i>c</i>	1	0	0	0.35437(2)	0.0072(3)
Sm _{5.40(1)} 2	Zn ₄ As ₈					
Sm1	6 <i>c</i>	1	0	0	0.29186(2)	0.0072(1)
Sm2	6 <i>c</i>	1	0	0	0.41644(2)	0.0082(1)
Sm3	3 <i>b</i>	0.400(4)	0	0	1/2	0.0113(5)
Sm4	3 <i>a</i>	1	0	0	0	0.0070(1)
M1	6 <i>c</i>	1 Zn	0	0	0.11549(2)	0.0169(3)

M2a	6 <i>c</i>	0.819(4) Zn	0	0	0.19437(3)	0.0286(5)
M2b	6 <i>c</i>	0.181(4) Zn	0	0	0.17988(12)	0.0286(5)
As1	6 <i>c</i>	1	0	0	0.06272(2)	0.0068(2)
As2	6 <i>c</i>	1	0	0	0.14601(2)	0.0122(2)
As3	6 <i>c</i>	1	0	0	0.22865(2)	0.0088(2)
As4	6 <i>c</i>	1	0	0	0.35424(2)	0.0070(2)
Sm _{5.33(1)} Mn	$_{0.58(1)}Zn_{3.42(1)}As$	S ₈				
Sm1	6 <i>c</i>	1	0	0	0.29173(2)	0.0089(1)
Sm2	6 <i>c</i>	1	0	0	0.41670(2)	0.0104(1)
Sm3	3 <i>b</i>	0.332(4)	0	0	1/2	0.0212(7)
Sm4	3 <i>a</i>	1	0	0	0	0.0088(1)
<i>M</i> 1	6 <i>c</i>	1 Zn	0	0	0.11598(2)	0.0197(3)
M2a	6 <i>c</i>	0.710(4) Zn	0	0	0.19445(3)	0.0255(4)
M2b	6 <i>c</i>	0.290(4) Mn	0	0	0.18086(9)	0.0255(4)
As1	6 <i>c</i>	1	0	0	0.06290(2)	0.0086(2)
As2	6 <i>c</i>	1	0	0	0.14657(2)	0.0157(2)
As3	6 <i>c</i>	1	0	0	0.22834(2)	0.0107(2)
As4	6 <i>c</i>	1	0	0	0.35430(2)	0.0089(2)
Gd _{5.27(1)} Mn	$_{0.62(1)}Zn_{3.38(1)}As$	58				
Gd1	6 <i>c</i>	1	0	0	0.29192(2)	0.0112(2)
Gd2	6 <i>c</i>	1	0	0	0.41624(2)	0.0134(2)
Gd3	3 <i>b</i>	0.271(5)	0	0	1/2	0.0292(13)
Gd4	3 <i>a</i>	1	0	0	0	0.0109(2)
<i>M</i> 1	6 <i>c</i>	1 Zn	0	0	0.11600(2)	0.0252(4)
M2a	6 <i>c</i>	0.692(5) Zn	0	0	0.19511(4)	0.0276(6)
M2b	6 <i>c</i>	0.308(5) Mn	0	0	0.18112(11)	0.0276(6)
As1	6 <i>c</i>	1	0	0	0.06269(2)	0.0108(3)
As2	6 <i>c</i>	1	0	0	0.14706(2)	0.0189(3)
As3	6 <i>c</i>	1	0	0	0.22855(2)	0.0128(3)
As4	6 <i>c</i>	1	0	0	0.35423(2)	0.0107(3)

^a $U_{\rm eq}$ is defined as one-third of the trace of the orthogonalized U_{ij} tensor.

	$Ce_{3.32(1)}Mn_{1.1(1)}Zn_{2.9(1)}As_{6}$	$Pr_{3.46(1)}Zn_4As_6$	$Nd_{3.34(1)}Mn_{0.92(6)}Zn_{3.08(6)}As_{6}$
<i>RE</i> 1–As3 (×3)	2.991(2)	2.970(1)	2.952(1)
<i>RE</i> 1–As1 (×3)	3.067(2)	3.050(1)	3.012(1)
<i>RE1–M2</i> (×3)	3.652(3)	3.623(1)	3.611(1)
<i>RE2</i> –As2 (×6)	2.901(2)	2.987(1)	2.917(1)
<i>RE2–M</i> 1b (×6)	2.702(8)	2.652(4)	2.685(3)
<i>RE2–M</i> 1a (×6)	3.324(4)	3.385(1)	3.322(2)
<i>RE</i> 3–As3 (×6)	3.023(2)	3.008(1)	2.978(1)
<i>M</i> 1a–As2 (×3)	2.530(2)	2.507(1)	2.497(1)
Mla–Asl	2.698(6)	2.754(2)	2.755(2)
<i>M</i> 1a– <i>M</i> 2 (×3)	3.053(4)	3.090(1)	3.053(2)
<i>M</i> 1b–As2 (×3)	2.469(3)	2.520(3)	2.456(2)
M1b-As2	2.747(18)	2.804(10)	2.817(8)
<i>M</i> 1b– <i>M</i> 1b (×3)	3.38(2)	3.231(13)	3.374(10)
<i>M</i> 2–As2	2.529(5)	2.530(1)	2.515(2)
<i>M</i> 2–As1 (×3)	2.581(2)	2.571(1)	2.570(1)
<i>M</i> 2– <i>M</i> 1a (×3)	3.053(4)	3.090(1)	3.053(2)
	$Nd_{4.41(1)}Zn_4As_7$	Sm _{4.39(1)} Zn ₄ As ₇	
<i>RE</i> 1–As4 (×3)	2.977(1)	2.950(1)	
<i>RE</i> 1–As3 (×3)	3.001(2)	2.969(1)	
<i>RE2</i> –As3 (×3)	2.962(2)	2.938(1)	
<i>RE2</i> –As1 (×3)	3.018(2)	2.986(1)	
<i>RE2–M2</i> (×3)	3.608(2)	3.590(1)	
<i>RE</i> 3–As2 (×6)	2.969(2)	2.947(1)	
<i>RE3–M</i> 1b (×6)	2.657(5)	2.638(4)	
<i>RE3–M</i> 1a (×6)	3.334(2)	3.304(2)	
<i>M</i> 1a–As2 (×3)	2.490(2)	2.473(1)	
M1a–As1	2.809(3)	2.837(3)	
<i>M</i> 1a– <i>M</i> 2 (×3)	3.101(2)	3.092(2)	
<i>M</i> 1b–As2 (×3)	2.502(3)	2.487(3)	
M1b-As2	2.805(12)	2.776(11)	
<i>M</i> 1b– <i>M</i> 1b (×3)	3.259(16)	3.231(14)	
<i>M</i> 2–As2	2.510(2)	2.503(2)	
<i>M</i> 2–As1 (×3)	2.576(2)	2.570(1)	

Table S4. Interatomic distances (Å) for $RE_{2-y}Mn_xZn_{4-x}As_4 \cdot n(REAs)$ (n = 2, 3, 4).

<i>M</i> 2– <i>M</i> 1a (×3)	3.101(2)	3.092(2)
	$Nd_{5,43(1)}Zn_4As_8$	Sm _{5.40(1)} Zn ₄ As ₈
<i>RE</i> 1–As4 (×3)	2.970(1)	2.940(1)
<i>RE</i> 1–As1 (×3)	3.008(1)	2.973(1)
<i>RE2</i> –As1 (×3)	2.960(1)	2.931(1)
<i>RE2</i> –As3 (×3)	3.025(1)	2.989(1)
<i>RE2–M</i> 1 (×3)	3.611(2)	3.586(1)
<i>RE</i> 3–As2 (×6)	2.973(1)	2.944(1)
<i>RE</i> 3– <i>M</i> 2b (×6)	2.665(7)	2.640(4)
<i>RE3–M</i> 2a (×6)	3.344(2)	3.312(2)
<i>RE</i> 4–As4 (×6)	2.989(1)	2.956(1)
M1–As2	2.510(3)	2.506(2)
<i>M</i> 1–As3 (×3)	2.578(1)	2.565(1)
<i>M</i> 1– <i>M</i> 2a (×3)	3.098(2)	3.084(2)
<i>M</i> 2a–As2 (×3)	2.496(1)	2.475(1)
M2a–As2	2.793(3)	2.815(2)
M2a–M1 (×3)	3.098(2)	3.084(2)
<i>M</i> 2b–As2 (×3)	2.504(4)	2.483(2)
M2b-As2	2.818(17)	2.780(10)
M2b-M2b (×3)	3.28(2)	3.240(13)
	$Sm_{5.33(1)}Mn_{0.58(1)}Zn_{3.42(1)}As_8$	$Gd_{5.27(1)}Mn_{0.62(1)}Zn_{3.38(1)}As_8$
<i>RE</i> 1–As4 (×3)	2.942(1)	2.913(1)
<i>RE</i> 1–As1 (×3)	2.973(1)	2.949(1)
<i>RE</i> 2–As1 (×3)	2.934(1)	2.899(1)
<i>RE2</i> –As3 (×3)	2.989(1)	2.978(1)
<i>RE2–M</i> 1 (×3)	3.598(1)	3.596(2)
<i>RE</i> 3–As2 (×6)	2.917(1)	2.871(1)
<i>RE</i> 3– <i>M</i> 2b (×6)	2.674(3)	2.662(4)
<i>RE3–M</i> 2a (×6)	3.314(2)	3.323(2)
<i>RE</i> 4–As4 (×6)	2.958(1)	2.931(1)
M1–As2	2.507(2)	2.522(2)
<i>M</i> 1–As3 (×3)	2.570(1)	2.558(1)
<i>M</i> 1– <i>M</i> 2a (×3)	3.053(2)	2.995(2)
M2a–As2 (×3)	2.488(1)	2.495(1)
M2a–As2	2.778(3)	2.715(3)

M2a–M1 (×3)	3.052(2)	2.995(2)
<i>M</i> 2b–As2 (×3)	2.455(2)	2.426(2)
M2b-As2	2.811(7)	2.764(9)
<i>M</i> 2b– <i>M</i> 2b (×3)	3.348(10)	3.349(13)

Figure S1. Powder XRD patterns for $RE_{4-y}Zn_4As_6$ (RE = La-Nd).

Figure S2. Powder XRD patterns for $RE_{5-y}Zn_4As_7$ (RE = Pr, Nd, Sm, Gd).

Figure S3. Powder XRD patterns for $RE_{6-y}Zn_4As_8$ (*RE* = La–Nd, Sm, Gd).