Exploring the acid-catalyzed substitution mechanism of [Fe₄S₄Cl₄]²⁻

Thaer M. M. Al-Rammahi and Richard A. Henderson

SUPPLEMENTARY INFORMATION

Supplementary Information

Table of Contents

Kinetic Data

- FIG S1: Absorbance-time curve for the reaction of $[Fe_4S_4Cl_4]^{2-}$ (0.2 mmol dm⁻³) with PhS⁻ (5.0 mmol dm⁻³) in the presence of NHMe₃⁺ (10.0 mmol dm⁻³) in MeCN at 25.0 °C.
- TABLE S1.Kinetic data for the Reaction of $[Fe_4S_4Cl_4]^{2-}$ with PhSH in the Presence of
NHPrn₃⁺ in MeCN at 25.0 °C.
- TABLE S2.Kinetic data for the Reaction of $[Fe_4S_4Cl_4]^2$ with PhSH in the Presence of
NHMe₃⁺ in MeCN at 25.0 °C.
- TABLE S3. Kinetic data for the Reaction of $[Fe_4S_4Cl_4]^2$ with PhSH in the Presence of NHBuⁿ₃⁺ in MeCN at 25.0 °C.

Temperature Dependence Studies

TABLE S4.	Kinetic data for the Effect of Temperature on the Reaction of [Fe ₄ S ₄ Cl ₄] ²⁻ (0.2
	mmol dm ⁻³) with PhSH in the Presence of NHB u_{3}^{+} in MeCN.

- FIG. S2. Eyring plot the Reaction of $[Fe_4S_4Cl_4]^{2-}$ (0.2 mmol dm⁻³) with PhSH in the Presence of NHBuⁿ₃⁺ in MeCN
- TABLE S5. Kinetic data for the Effect of Temperature on the Reaction of $[Fe_4S_4Cl_4]^{2-}$ (0.2 mmol dm⁻³) with PhSH in the Presence of NHEt₃⁺ in MeCN at 25.0 °C.
- FIG. S3. Graphs of $[PhSH]/k_{obs}$ versus $[NEt_3]/[NHEt_3^+]$ for the Reaction of $[Fe_4S_4Cl_4]^2$ -(0.2 mmol dm⁻³) with PhSH (2.5 mmol dm⁻³) in the Presence of NHEt_3⁺ in MeCN at Various Temperatures.
- FIG. S4. Eyring plot the Reaction of $[Fe_4S_4Cl_4]^{2-}$ (0.2 mmol dm⁻³) with PhSH in the Presence of NHEt₃⁺ in MeCN: Variation of K_0
- FIG. S5. Eyring plot the Reaction of $[Fe_4S_4Cl_4]^{2-}$ (0.2 mmol dm⁻³) with PhSH in the Presence of NHEt₃⁺ in MeCN: Variation of *k*
- TABLE S6. Kinetic data for the Effect of Temperature on the Reaction of $[Fe_4S_4(SEt)_4]^2$ -(0.2 mmol dm⁻³) with PhSH in the Presence of NHEt₃⁺ in MeCN at 25.0 °C.
- FIG. S6. Eyring plot the Reaction of $[Fe_4S_4(SEt)_4]^{2-}$ (0.2 mmol dm⁻³) with PhSH in the Presence of NHEt₃⁺ in MeCN.

Absorbance-time curve for the reaction of $[Fe_4S_4Cl_4]^{2-}$ (0.2 mmol dm⁻³) with PhS⁻ (5.0 mmol dm⁻³) in the presence of NHMe₃⁺ (10.0 mmol dm⁻³) in MeCN at 25.0 °C (λ = 550 nm). The experimental trace is shown in black and the exponential curves fit is in grey. The curve is defined by the equation $A_t = 0.38 - (0.19e^{-13.2t}) - (0.079e^{-1.45t})$.

$[NHPr^{n_{3}^{+}}]_{i} / mmol dm^{-3}$	[NPr ⁿ] _i / mmol dm ⁻³	[PhS ⁻] _i / mmol dm ⁻³	$[NHPr^{n_{3}^{+}}]_{i}/[NPr^{n}]_{i}$	$k_{\rm obs}(1) /{ m s}^{-1}$	$k_{\rm obs}(1)/[{\rm PhSH}]_{\rm i}$ / dm ³ mol ⁻¹ s ⁻¹	$k_{\rm obs}(2) / {\rm s}^{-1}$
2.50		1.25	1	11.4	9120	2.1
5.00		2.50	1	27.5	11000	3.0
5.00		1.25	3	15.0	12000	2.6
10.0		2.50	3	35.0	14000	4.9
10.0		1.25	7	15.4	12300	2.2

Kinetic data for the Reaction of $[Fe_4S_4Cl_4]^{2-}$ (0.2 mmol dm⁻³) with PhSH in the Presence of NHPrⁿ₃⁺ in MeCN at 25.0 °C ($\lambda = 550$ nm).

[NHMe ₃ ⁺] _i	[NMe ₃] _i	[PhS ⁻] _i	$[NHMe_3^+]_e/[NMe]_e$	$k_{\rm obs}(1) /{ m s}^{-1}$	$k_{\rm obs}(1)/[{\rm PhSH}]_{\rm i}$	$k_{\rm obs}(2) / {\rm s}^{-1}$
/ mmol dm ⁻³	/ mmol dm ⁻³	/ mmol dm ⁻³			/ dm ³ mol ⁻¹ s ⁻¹	
2.50	0.0	1.25	1.0	2.2	1760	0.37
5.00		2.50	1.0	6.2	2480	0.63
10.0		5.00	1.0	13.2	2640	1.4
15.0		5.00	2.0	14.9	2980	1.0
5.00		1.25	3.0	3.4	2720	0.76
10.0		2.50	3.0	7.0	2784	0.90
20.0		5.00	3.0	15.6	3120	1.4
25.0		5.00	4.0	20.0	4000	1.5
15.0		2.50	5.0	12.3	4920	1.9
10.0		1.25	7.0	6.1	4880	1.9
20.0		2.50	7.0	14.3	5720	1.8
15.0		1.25	11.0	8.9	7120	1.5
30.0		2.50	11.0	17.5	7000	2.0
20.0		1.25	15	10.5	8400	1.7
25.0		1.25	19	12.3	9800	2.5

Kinetic data for the Reaction of $[Fe_4S_4Cl_4]^2$ (0.2 mmol dm⁻³) with PhSH in the Presence of NHMe₃⁺ in MeCN at 25.0 °C ($\lambda = 550$ nm).

[NHBu ⁿ 3 ⁺] _i / mmol dm ⁻³	[PhS ⁻] _i / mmol dm ⁻³	[NHBu ⁿ 3 ⁺]e/[NBu ⁿ 3]e	[NHBu ⁿ 3 ⁺] _e / mmol dm ⁻³	$k_{\rm obs}(1) / { m s}^{-1}$	10 ⁻³ k _{obs} (1)/[PhSH] _i / dm ³ mol ⁻¹ s ⁻¹	$k_{\rm obs}(2) /{ m s}^{-1}$
1.25	0.625	1	0.625	1.2	1.92	0.3
2.50	1.25	1	1.25	2.0	1.60	0.41
2.50	0.625	3	1.88	1.9	3.04	0.40
5.0	2.50	1	2.50	2.2	0.88	0.44
5.0	1.25	3	3.75	3.3	2.64	0.55
5.0	0.625	7	4.38	2.8	4.48	0.50
10.0	5.0	1	5.0	5.0	1.0	0.75
10.0	2.50	3	7.5	4.8	1.9	0.70
10.0	1.25	7	8.75	5.2	4.16	0.88
10.0	0.625	15	9.38	5.3	8.48	0.90
15.0	5.0	2	10.0	6.2	1.24	0.92
15.0	2.50	5	12.5	7.3	2.92	0.95
15.0	1.25	11	13.75	7.7	6.16	0.95
15.0	0.625	23	14.38	9	14.4	1.2

Kinetic data for the Reaction of $[Fe_4S_4Cl_4]^2$ (0.2 mmol dm⁻³) with PhSH in the Presence of NHBuⁿ₃⁺ in MeCN at 25.0 °C ($\lambda = 550$ nm).

Temperature Dependence Studies

All temperature dependence studies were performed over the temperature range 15 - 35 °C.

The data was analysed using the Eyring equation shown below.

$$\log_{10}(k/T) = \{10.32 + (\Delta S^{\ddagger}/R)\} - \{\Delta H^{\ddagger}/RT\}$$

Where k = rate or equilibrium constant measured at temperature T (°K), R = gas constant and both Δ H[‡] and Δ S[‡] are in cals.

Temperature / °K	[NHBu ⁿ 3 ⁺] _i / mmol dm ⁻³	[PhS ⁻] _i / mmol dm ⁻³	$k_{\rm obs}(1) / { m s}^{-1}$	$k_{\rm obs}(2) /{ m s}^{-1}$
288	3.50	2.50	6.1	0.69
	4.50	2.50	6.5	0.80
	6.50	2.50	7.5	0.98
	10.5	2.50	9.5	1.1
	14.5	2.50	10.5	1.1
293	3.50	2.50	6.0	0.75
	4.50	2.50	6.5	1.0
	6.50	2.50	7.8	1.07
	10.5	2.50	9.5	1.1
	14.5	2.50	11.3	1.1
308	3.50	2.50	6.5	0.85
	4.50	2.50	7.0	1.0
	6.50	2.50	8.0	1.18
	10.5	2.50	9.5	1.3
	14.5	2.50	12.2	1.3

Kinetic data for the Effect of Temperature on the Reaction of $[Fe_4S_4Cl_4]^{2-}$ (0.2 mmol dm⁻³) with PhSH in the Presence of NHBuⁿ₃⁺ in MeCN.

FIG. S2

Eyring plot the Reaction of $[Fe_4S_4Cl_4]^{2\text{-}}$ (0.2 mmol dm^-3) with PhSH in the Presence of NHBu^{n}_3^+ in MeCN.

Temperature	[NHEt_+]	[PhS-]	[NHEt_+]./[NEt_].	k, (1) / s ⁻¹	$k \cdot (2) / s^{-1}$
	$/ \text{mmol dm}^{-3}$	$/ \text{mmol dm}^{-3}$		$n_{\rm obs}(1)/3$	$n_{\rm obs}(2) / 3$
/ 1	/ mmor dm	/ minor am			
288	3.80	2.5	0.50	5.0	0.48
	5.0	2.5	1.0	6.8	0.67
	6.2	2.5	1.5	8.2	0.80
	10.0	2.5	3.0	10.2	0.90
	15.0	2.5	5.0	11.3	1.08
	20.0	2.5	7.0	11.8	1.2
293	3.80	2.5	0.50	5.1	0.49
	5.0	2.5	1.0	7.7	0.57
	6.2	2.5	1.5	8.6	0.89
	10.0	2.5	3.0	10.7	1.17
	15.0	2.5	5.0	11.5	1.26
	20.0	2.5	7.0	12.4	1.55
303	3.80	2.5	0.50	5.7	0.73
	5.0	2.5	1.0	8.1	0.9
	6.2	2.5	1.5	9.2	1.01
	10.0	2.5	3.0	11.7	1.37
	15.0	2.5	5.0	13.0	1.7
	20.0	2.5	7.0	14.2	2.6
308	3.80	2.5	0.50	6.0	0.83
	5.0	2.5	1.0	8.3	0.96
	6.2	2.5	1.5	10.0	1.6
	10.0	2.5	3.0	12.6	1.8
	15.0	2.5	5.0	13.9	2.45
	20.0	2.5	7.0	14.8	3.6

Kinetic data for the Effect of Temperature on the Reaction of $[Fe_4S_4Cl_4]^{2-}$ (0.2 mmol dm⁻³) with PhSH in the Presence of NHEt₃⁺ in MeCN.

FIG. S3

Graphs of [PhSH]/ k_{obs} versus [NEt₃]/[NHEt₃⁺] for the Reaction of [Fe₄S₄Cl₄]²⁻ (0.2 mmol dm⁻³) with PhSH (2.5 mmol dm⁻³) in the Presence of NHEt₃⁺ in MeCN at Various Temperatures. Data points correspond to: T = 288 °K (\blacklozenge); T = 293 °K (\blacksquare); T = 303 °K (\blacktriangle); T = 308 °K (\blacklozenge).

Each line is that defined by the equation below and the associated rate and equilibrium constants.

$$\frac{[\text{PhSH}]}{k_{\text{obs}}} = \frac{1}{kK_0} \frac{[\text{NEt}_3]}{[\text{NHEt}_3^+]} + \frac{1}{k}$$

temperature / °K	K_0 / dm ³ mol ⁻¹	k / s^{-1}
288	1.103	5.33 x 10 ³
293	1.124	5.56 x 10 ³
303	1.168	6.03 x 10 ³
308	1.190	6.27 x 10 ³

FIG. S4

Eyring plot the Reaction of $[Fe_4S_4Cl_4]^{2-}$ (0.2 mmol dm⁻³) with PhSH in the Presence of NHEt₃⁺ in MeCN: Variation of K_0

FIG. S5

Eyring plot the Reaction of $[Fe_4S_4Cl_4]^{2-}$ (0.2 mmol dm⁻³) with PhSH in the Presence of NHEt₃⁺ in MeCN: Variation of *k*

Temperature / °K	[NHEt ₃ ⁺] _i / mmol dm ⁻³	[PhS ⁻] _i / mmol dm ⁻³	[NHEt ₃ ⁺] _i /[NEt ₃] _i	$k_{\rm obs}(1) / { m s}^{-1}$	$k_{\rm obs}(2) \ / \ { m s}^{-1}$
288	10.0	1.0	9.0	1.80	0.2
293	10.0	1.0	9.0	1.88	0.17
298	10.0	1.0	9.0	2.0	0.18
303	10.0	1.0	9.0	2.1	0.2
308	10.0	1.0	9.0	2.2	0.18

Kinetic data for the Effect of Temperature on the Reaction of $[Fe_4S_4(SEt)_4]^{2-}$ (0.2 mmol dm⁻³) with PhSH in the Presence of NHEt₃⁺ in MeCN.

FIG. S6

Eyring plot the Reaction of $[Fe_4S_4(SEt)_4]^{2-}$ (0.2 mmol dm⁻³) with PhSH in the Presence of NHEt₃⁺ in MeCN.

