Synthesis and reactions of N-heterocycle functionalised variants of heterometallic {Cr₇Ni} rings

George F. S. Whitehead,¹ Jesús Ferrando-Soria,¹ Laura Carthy,¹ Robin G. Pritchard,¹ Simon J. Teat,² Grigore A. Timco¹ and Richard E. P. Winpenny.¹

- 1. The School of Chemistry and Photon Science Institute, The University of Manchester, Oxford Road, Manchester M13 9PL
- 2. Advanced Light Source, Lawrence Berkeley Laboratory, 1 Cyclotron Road, MS2-400, Berkeley, California 94720, USA.

Table of contents

Table of contents1	•
1. Synthesis and experimental section2	
1.1 N-donor functionalised ring synthesis2	
1.1.1 Synthesis of ["Pr ₂ NH ₂][Cr ₇ NiF ₈ (O ₂ C ^t Bu) ₁₅ (O ₂ CC ₂ H ₂ C ₅ H ₄ N)] 22	
1.1.2 Synthesis of ["Pr ₂ NH ₂][Cr ₇ NiF ₈ (O ₂ C ^t Bu) ₁₅ (O ₂ CC ₄ H ₃ N ₂)] 3	
1.2 Coordination compounds with rings as ligands2	
1.2.1 Synthesis of {["Pr ₂ NH ₂][Cr ₇ NiF ₈ (O ₂ C ^t Bu) ₁₅ (O ₂ CC ₅ H ₄ N)]} ₂ [Cu(NO ₃) ₂ (OH ₂)] 42	
1.2.2 Synthesis of {["Pr ₂ NH ₂][Cr ₇ NiF ₈ (O ₂ C ^t Bu) ₁₅ (O ₂ CC ₅ H ₄ N)]} ₂ [AgNO ₃] 5	
1.2.3 Synthesis of {[" Pr_2NH_2][$Cr_7NiF_8(O_2C^tBu)_{15}(O_2CC_2H_2C_5H_4N)$]} ₂ [$Cu(NO_3)_2(OH_2)$] 6	
1.2.4 Synthesis of ${[^{n}Pr_{2}NH_{2}][Cr_{7}NiF_{8}(O_{2}C^{t}Bu)_{15}(O_{2}CC_{5}H_{4}N)]}_{2}[Ni(acac)_{2}]$ 7	
1.2.5 Synthesis of {[" Pr_2NH_2][$Cr_7NiF_8(O_2C^tBu)_{15}(O_2CC_5H_4N)$]} ₂ [Ni($F_3CCOCHCOCH_3$) ₂] 8	
1.2.6 Synthesis of ${[^{n}Pr_{2}NH_{2}][Cr_{7}NiF_{8}(O_{2}C^{t}Bu)_{15}(O_{2}CC_{5}H_{4}N)]}_{2}[Ni(Hfac)_{2}]$ 9	
1.2.7 Synthesis of {[n Pr ₂ NH ₂][Cr ₇ NiF ₈ (O ₂ C ^t Bu) ₁₅ (O ₂ CC ₅ H ₄ N)]} ₂ [Cu(Hfac) ₂] 104	ļ
1.2.8 Synthesis of {["Pr ₂ NH ₂][Cr ₇ NiF ₈ (O ₂ C ^t Bu) ₁₅ (O ₂ CC ₅ H ₄ N)]} ₂ [Mn(Hfac) ₂] 114	ļ
1.2.9 Synthesis of {[n Pr ₂ NH ₂][Cr ₇ NiF ₈ (O ₂ C ^t Bu) ₁₅ (O ₂ CC ₄ H ₃ N ₂)]} ₂ [Ni(Hfac) ₂] 124	ļ
1.2.10 Synthesis of {[" Pr_2NH_2][$Cr_7NiF_8(O_2C'Bu)_{15}(O_2CC_4H_4N_2)$]} ₂ [Mn(Hfac) ₂] 134	ŀ
1.2.11 Synthesis of {["Pr ₂ NH ₂][Cr ₇ NiF ₈ (O ₂ C ^t Bu) ₁₅ (O ₂ CC ₅ H ₄ N)]} ₂ [ReCl(CO) ₃] 144	ļ
1.2.12 Synthesis of {["Pr ₂ NH ₂][Cr ₇ NiF ₈ (O ₂ C ^t Bu) ₁₅ (O ₂ CC ₅ H ₄ N)]} ₂ [Cu ₂ (O ₂ C ^t Bu) ₄] 15	,
1.2.13 Synthesis of {["Pr ₂ NH ₂][Cr ₇ NiF ₈ (O ₂ C ^t Bu) ₁₅ (O ₂ CC ₅ H ₄ N)]} ₂ [Ni ₂ (O ₂ C ^t Bu) ₄] 16	,
1.2.14 Synthesis of {["Pr ₂ NH ₂][Cr ₇ NiF ₈ (O ₂ C ^t Bu) ₁₅ (O ₂ CC ₅ H ₄ N)]} ₂ [Co ₂ (O ₂ C ^t Bu) ₄] 175	,
1.2.15 Synthesis of {["Pr ₂ NH ₂][Cr ₇ NiF ₈ (O ₂ C ^t Bu) ₁₅ (O ₂ CC ₅ H ₄ N)]} ₂ [Ru ₂ (O ₂ C ^t Bu) ₄]BF ₄ 185	,
1.2.16 Synthesis of {["Pr ₂ NH ₂][Cr ₇ NiF ₈ (O ₂ C ^t Bu) ₁₅ (O ₂ CC ₅ H ₄ N)]} ₂ [Rh ₂ (O ₂ CCH ₃) ₄] 19	,
1.2.17 Synthesis of {["Pr ₂ NH ₂][Cr ₇ NiF ₈ (O ₂ C ^t Bu) ₁₅ (O ₂ CC ₂ H ₂ C ₅ H ₄ N)]} ₂ [Cu ₂ (O ₂ C ^t Bu) ₄] 206	;

1.2.18 Synthesis of ${[^{n}Pr_{2}NH_{2}][Cr_{7}NiF_{8}(O_{2}C^{t}Bu)_{15}(O_{2}CC_{4}H_{3}N_{2})]}_{2}[Cu_{2}(O_{2}C^{t}Bu)_{4}]$ 21	6	
2. Crystallographic information	7	

1. Synthesis and experimental section

General experimental information contained within the main paper.

1.1 N-donor functionalised ring synthesis

1.1.1 Synthesis of $[^{n}Pr_{2}NH_{2}][Cr_{7}NiF_{8}(O_{2}C^{t}Bu)_{15}(O_{2}CC_{2}H_{2}C_{5}H_{4}N)] 2$

[ⁿPr₂NH₂][Cr₇NiF₈(O₂C'Bu)₁₆] (5.0 g, 2.18 mmol), 3-(4-pyridyl)acrylic acid (1.291 g, 8.77 mmol) and propan-1-ol (100 mL) were refluxed for 19.5 h with constant stirring. The resultant solution was cooled to room temperature and filtered. The solvent from the filtrate removed under reduced pressure and the resultant residue extracted in diethyl ether. The obtained solution was filtered and diethyl ether removed under reduced pressure leaving a green residue containing a mixture of unreacted and substituted products. **2** was separated and purified by column chromatography on 40-63 μ m mesh silica gel (BDH). First, toluene was used as solvent, which allowed un-reacted starting ring to be eluted, leaving the products of the reaction at the top of the column. Thereafter a mixture of petroleum ether:ethyl acetate elution was used. Firstly, a 20:1 mixture was used to remove any remaining unreacted starting ring. This was then gradually worked up to an 8:1 mixture, eluting **2**. The solvent was removed under reduced pressure and the resultant residue recrystallized from ether/acetonitrile slow evaporation. Yield 0.628 g (12% based on [ⁿPr₂NH₂][Cr₇NiF₈(O₂C'Bu)₁₆]). Elemental anal. calculated (%) for C₈₉H₁₅₇Cr₇F₈N₂NiO₃₂: C45.65 H6.76 N1.20 Cr15.54; Found: C45.40 H6.88 N1.07 Cr15.49

1.1.2 Synthesis of $[^{n}Pr_{2}NH_{2}][Cr_{7}NiF_{8}(O_{2}C^{t}Bu)_{15}(O_{2}CC_{4}H_{3}N_{2})]$ 3

[$^{n}Pr_{2}NH_{2}$][$Cr_{7}NiF_{8}(O_{2}C'Bu)_{16}$] (3.0 g, 1.31 mmol), 4-pyridazine acid (0.500 g, 4.10 mmol) and propan-1-ol (90 mL) were refluxed for 19.5 h with constant stirring. The resultant solution was cooled to room temperature and filtered. The solvent from the filtrate removed under reduced pressure and the resultant residue extracted in diethyl ether. The obtained solution was filtered and diethyl ether removed under reduced pressure leaving a green residue containing a mixture of unreacted and substituted products. **3** was separated and purified by column chromatography using a Reveleris® X2 Flash Chromatography System. First, toluene was used as solvent, which allowed unreacted stating ring to be separated from the substituted products, leaving the products of the reaction at the top of the column. Thereafter a mixture of hexane:ethyl acetate elution was used. Firstly, a 20:1 mixture was used to elute unreacted starting ring, which was then ramped up to an 8:1 mixture, eluting **3**. Other bands, further substituted products, were also present on the column. The solvent was removed under reduced pressure and **3** was recrystallized from hot acetone. Yield 1.25 g (41.3% based on [$^{n}Pr_{2}NH_{2}$][$Cr_{7}NiF_{8}(O_{2}C'Bu)_{16}$]). Elemental anal. calculated (%) for C₈₆H₁₅₄Cr₇F₈N₃NiO₃₂: C44.58 H6.70 N1.81 Cr15.71; Found: C44.70 H7.05 N1.76 Cr15.52

1.2 Coordination compounds with rings as ligands

1.2.1 Synthesis of ${[^{n}Pr_{2}NH_{2}][Cr_{7}NiF_{8}(O_{2}C^{t}Bu)_{15}(O_{2}CC_{5}H_{4}N)]}_{2}[Cu(NO_{3})_{2}(OH_{2})] 4$

Cu(NO₃)₂.2.5H₂O (0.011g, 0.049 mmol) was added to a solution of **1** (0.3 g, 0.13 mmol) in hot acetone (30 mL) with stirring. The solution was refluxed for 5 minutes before cooling and left undisturbed in a sealed flask at room temperature. Dark green crystals suitable for single crystal XRD formed after 1 week and were collected by filtration and washed with acetone. Yield 0.17g (71.7% based on Cu(NO₃)₂.2.5H₂O). Elemental anal. calculated (%) for C₁₇₄H₃₁₂Cr₁₄Cu₁F₁₆N₆Ni₂O₇₁: C43.20 H6.50 N1.74 Cr15.05 Ni2.43 Cu1.31; Found: C43.05 H6.54 N1.66 Cr15.25 Ni2.42 Cu1.26

1.2.2 Synthesis of {["Pr₂NH₂][Cr₇NiF₈(O₂C^tBu)₁₅(O₂CC₅H₄N)]}₂[AgNO₃] 5

AgNO₃ (0.009 g, 0.053 mmol) was added to a solution of **1** (0.25 g, 1.08 mmol) in hot acetone (30 mL) with stirring. The solution was stirred for 24 h at ambient temperature, after which a precipitate formed. This was collected by filtration, redissolved in hot acetone and left to crystallise overnight. Small green crystals suitable for single crystal XRD formed. These were analysed and the remainder which were collected by filtration and washed with cold acetone. Yield 0.017g (6.68% based on Ag(NO₃)). Elemental anal. calculated (%) for $C_{174}H_{310}AgCr_{14}F_{16}N_5Ni_2O_{67}$: C43.59 H6.52 N1.46; Found: C43.65 H6.63 N1.40

1.2.3 Synthesis of ${[^{n}Pr_{2}NH_{2}][Cr_{7}NiF_{8}(O_{2}C^{t}Bu)_{15}(O_{2}CC_{2}H_{2}C_{5}H_{4}N)]}_{2}[Cu(NO_{3})_{2}(OH_{2})] 6$

Cu(NO3)₂·2.5H₂O (0.012 g, 0.050 mmol) was added to a solution of **2** (0.302 g, 0.129 mmol) in hot acetone (40 mL) with constant stirring. The solution was refluxed for 5 mins after which it was cooled to room temperature and left in a sealed flask for 48h, after which crystals suitable for single crystal XRD formed. These were analysed and the remainder were collected and washed with cold acetone. Yield 0.126g (52% based on Cu(NO3)₂·2.5H₂O). Elemental anal. calculated (%) for C₁₇₈H₃₁₆Cr₁₄CuF₁₆N₆Ni₂O₇₁: C43.73 H6.51 N1.72 Cr14.89 Ni2.40 Cu1.30; Found: C43.51 H6.55 N1.71 Cr14.94 Ni2.35 Cu1.23

1.2.4 Synthesis of ${[^{n}Pr_{2}NH_{2}][Cr_{7}NiF_{8}(O_{2}C^{t}Bu)_{15}(O_{2}CC_{5}H_{4}N)]}_{2}[Ni(acac)_{2}]$ 7

Ni(acac)₂·2H₂O (0.063 g, 0.021 mmol) was added to a solution of **1** (0.100 g, 0.043 mmol) in hot acetone (20 mL) with constant stirring. The solution was refluxed for 5 mins, cooled and left covered. After 24 hours crystals formed. These were collected by filtration and washed with acetone. Yield 0.039 g (38% based on Ni(acac)₂·2H₂O). Elemental anal. calculated (%) for $C_{184}H_{324}Cr_{14}F_{16}N_4Ni_3O_{68}$: C 45.21, H 6.68, N 1.15, Cr 14.89, Ni 3.60; Found: C 44.92, H 6.86, N 1.21, Cr 14.77, Ni 3.53

1.2.5 Synthesis of {["Pr₂NH₂][Cr₇NiF₈(O₂C^tBu)₁₅(O₂CC₅H₄N)]}₂[Ni(F₃CCOCHCOCH₃)₂] 8

Ni(F₃CCOCHCOCH₃)₂·2H₂O (0.078g, 0.021 mmol) was added to a solution of **1** (0.100 g, 0.043 mmol) in hot acetone (20 mL) with constant stirring. The solution was refluxed for 5 mins, cooled and left covered. After 24 hours crystals formed. These were collected by filtration and washed with acetone. Yield 0.048 g (46% based on Ni(F₃CCOCHCOCH₃)₂·2H₂O). Elemental anal. calculated (%) for C₁₈₄H₃₁₈Cr₁₄F₂₂N₄Ni₃O₆₈: C 44.23, H 6.42, N 1.12, Cr 14.57, Ni 3.52; Found: C 43.95, H 6.57, N 1.18, Cr 14.52, Ni 3.62

1.2.6 Synthesis of ${[^{n}Pr_{2}NH_{2}][Cr_{7}NiF_{8}(O_{2}C^{t}Bu)_{15}(O_{2}CC_{5}H_{4}N)]}_{2}[Ni(Hfac)_{2}] 9$

Ni(Hfac)₂·2H₂O (0.010 g, 0.021 mmol) was added to a solution of **1** (0.100 g, 0.043 mmol) in hot acetone (20 mL) with constant stirring. The solution was refluxed for 5 mins, cooled and left covered.

After 24 hours crystals formed. These were collected by filtration and washed with acetone. Yield 0.046 g (43% based on Ni(Hfac)₂·2H₂O). Elemental anal. calculated (%) for $C_{184}H_{312}Cr_{14}F_{28}N_4Ni_3O_{68}$: C 43.30, H 6.16, N 1.09, Cr 14.26, Ni 3.45; Found: C 43.02, H 6.37, N 1.08, Cr 14.02, Ni 3.36

1.2.7 Synthesis of {["Pr₂NH₂][Cr₇NiF₈(O₂C^tBu)₁₅(O₂CC₅H₄N)]}₂[Cu(Hfac)₂] 10

Cu(Hfac)₂(H₂O)₂ (0.011 g, 0.021 mmol) was added to a solution of **1** (0.101 g, 0.043 mmol) in hot acetone (20 mL) with constant stirring. The solution was refluxed for 5 mins, during which time a precipitate formed. This was collected by filtration, washed with acetone, dried in air and recrystallized from ether/acetone slow evaporation. Yield 0.046g (42.9% based on Cu(Hfac)₂(H₂O)₂). Elemental anal. calculated (%) for C₁₈₄H₃₁₂Cr₁₄CuF₂₈N₄Ni₂O₆₈: C43.25 H6.15 N1.10 Cr14.25 Ni2.30 Cu 1.24; Found: C43.15 H6.18 N1.11 Cr13.92 Ni2.29 Cu 1.23

1.2.8 Synthesis of ${[^{n}Pr_{2}NH_{2}][Cr_{7}NiF_{8}(O_{2}C^{t}Bu)_{15}(O_{2}CC_{5}H_{4}N)]}_{2}[Mn(Hfac)_{2}]$ 11

 $Mn(Hfac)_2(H_2O)_2$ (0.010 g, 0.021 mmol) was added to a solution of **1** (0.103 g, 0.044 mmol) in hot acetone (20 mL) with constant stirring. The solution was refluxed for 5 mins and then filtered hot. The solution was left partially covered and after partial evaporation crystals suitable for single crystal XRD formed. These were analysed and the remainder were collected and washed with acetone. Yield $Mn(Hfac)_2(H_2O)_2).$ Elemental 0.052g (48.6% based on anal. calculated (%) for C184H312Cr14F28MnN4Ni2O68: C43.33 H6.17 N1.10 Cr14.27 Ni2.30 Mn1.08; Found: C43.12 H6.23 N1.09 Cr14.08 Ni2.33 Mn1.02

1.2.9 Synthesis of {["Pr₂NH₂][Cr₇NiF₈(O₂C^tBu)₁₅(O₂CC₄H₃N₂)]}₂[Ni(Hfac)₂] 12

Ni(Hfac)₂·2H₂O (0.010 g, 0.021 mmol) was added to a solution of **3** (0.103 g, 0.044 mmol) in hot acetone (20 mL) with constant stirring. The solution was refluxed for 5 mins, cooled and left covered. After 24 hours crystals formed. These were collected by filtration and washed with acetone. Yield 0.042 g (39% based on Ni(Hfac)₂·2H₂O). Elemental anal. calculated (%) for $C_{182}H_{310}Cr_{14}F_{28}N_6Ni_3O_{68}$: C 42.81, H 6.12, N 1.65, Cr 14.26, Ni 3.45; Found: C 42.47, H 6.00, N 1.59, Cr 13.85, Ni 3.46

1.2.10 Synthesis of {["Pr₂NH₂][Cr₇NiF₈(O₂C^tBu)₁₅(O₂CC₄H₄N₂)]}₂[Mn(Hfac)₂] 13

 $Mn(Hfac)_2(H_2O)_2$ (0.014 g, 0.023 mmol) was dissolved in acetone (5 mL) and added to a solution of **3** (0.106g, 0.046 mmol) in hot acetone (15 mL) with constant stirring. The solution was refluxed for 5 mins, after which it was cooled to room temperature and sealed. Very small crystals formed after 48h, were collected by filtration and washed with acetone. Yield 0.056 g (47% based on $Mn(Hfac)_2 \cdot 2H_2O)$. Elemental anal. calculated (%) for $C_{182}H_{310}Cr_{14}MnF_{28}N_6Ni_2O_{68}$: C43.27 H6.22 N1.61 Cr13.95 Mn1.05; Found: C43.15 H6.19 N1.66 Cr13.64 Mn0.80

1.2.11 Synthesis of {[" Pr_2NH_2][$Cr_7NiF_8(O_2C^tBu)_{15}(O_2CC_5H_4N)$]}₂[ReCl(CO)₃] 14

ReCl(CO)₅ (0.031 mg, 0.085 mmol) was added to **1** (499 mg, 0.22 mmol) in toluene (10 ml) for 24 h. The solution was refluxed for 24h, after which the solution was cooled to room temperature and the toluene removed under reduced pressure. Column chromatography on alumina was used to isolate **31**, which was the first green band to be brought off using toluene as an eluent. The solvent was removed under reduced pressure and the residue recrystallised by acetone/pentane slow evaporation. Yield 0.263 g (62.7% based on ReCl(CO)₅). Elemental anal. calculated (%) for

C₁₇₇H₃₁₀ClCr₁₄F₁₆N₄Ni₂O₆₇Re: C43.06 H6.33 N1.13 Cr14.74 Re3.77; Found: C42.77 H6.32 N1.07 Cr14.46 Re3.85

1.2.12 Synthesis of {[ⁿPr₂NH₂][Cr₇NiF₈(O₂C^tBu)₁₅(O₂CC₅H₄N)]}₂[Cu₂(O₂C^tBu)₄] 15

 $Cu_2(O_2C^tBu)_4(HO_2C^tBu)_2$ (0.038g, 0.052 mmol) was added to a solution of **1** (0.25 g, 0.11 mmol) in toluene (10 mL) with stirring. The solution was stirred at ambient temperature for 30 mins then refluxed for 10 mins. The solution was filtered hot, allowed to cool slowly and left at 35-40°C overnight. The flask was left sealed at room temperature for 2 days, after which time dark green crystals suitable for single crystal XRD formed. These were collected by filtration and washed with hexane. Yield 0.240 g (89.9% based on $Cu_2(O_2C^tBu)_4(HO_2C^tBu)_2)$. Elemental anal. calculated (%) for $C_{194}H_{346}Cr_{14}Cu_2F_{16}N_4Ni_2O_{72}$: C45.13 H6.75 N1.09 Cr14.10 Ni2.27 Cu2.46; Found: C44.98 H6.87 N1.07 Cr14.39 Ni2.23 Cu2.43

1.2.13 Synthesis of {[" Pr_2NH_2][$Cr_7NiF_8(O_2C^tBu)_{15}(O_2CC_5H_4N)$]}₂[$Ni_2(O_2C^tBu)_4$] 16

 $[Ni_2(\mu-H_2O)(O_2C^tBu)_4(HO_2C^tBu)_4]$ (0.1 g, 0.105 mmol) was added to a solution of **1** (0.5 g, 0.22 mmol) in hot heptane (20 mL) with constant stirring. The solution was refluxed for 5 minutes, after which time a microcrystalline product formed. This was collected and washed with hot heptane and dried in air. Additional crystals suitable for single crystal XRD formed from the mother solution. Yield 0.210 g (38.5% based on $[Ni_2(\mu-H_2O)(O_2C^tBu)_4(HO_2C^tBu)_4]$). Elemental anal. calculated (%) for $C_{196}H_{336}Cr_{14}F_{16}N_6Ni_4O_{72}$: C45.21 H6.77 N1.09 Cr14.13 Ni4.56; Found: C44.99 H6.67 N1.01 Cr13.71 Ni4.78

1.2.14 Synthesis of {["Pr₂NH₂][Cr₇NiF₈(O₂C^tBu)₁₅(O₂CC₅H₄N)]}₂[Co₂(O₂C^tBu)₄] 17

 $[Co_2(\mu-H_2O)(O_2C^tBu)_4(HO_2C^tBu)_4]$ (0.027 g, 0.028 mmol) was dissolved in acetone (5 mL) and added to a solution of **1** (0.14 g, 0.06 mmol) in hot acetone (15 mL) with constant stirring. The solution was refluxed for 10 minutes, after which the solution was left to cool to room temperature and the flask sealed. Crystals suitable for single crystal XRD formed overnight, were analysed and the remainder were collected by filtration and washed with cold acetone. Yield 0.130 g (89.6% based on $[Co_2(\mu-H_2O)(O_2C^tBu)_4(HO_2C^tBu)_4]$). Elemental anal. calculated (%) for $C_{196}H_{336}CoCr_{14}F_{16}N_6Ni_2O_{72}$: C45.21 H6.77 N1.08 Cr14.12 Ni2.28 Co2.29; Found: C45.15 H6.74 N1.11 Cr14.03 Ni2.17 Co2.42

1.2.15 Synthesis of ${[^{n}Pr_{2}NH_{2}][Cr_{7}NiF_{8}(O_{2}C^{t}Bu)_{15}(O_{2}CC_{5}H_{4}N)]}_{2}[Ru_{2}(O_{2}C^{t}Bu)_{4}]BF_{4} 18$

 $[Ru_2(O_2C^tBu)_4]BF_4$ (0.07 g, 0.101 mmol) was added to a solution of **1** (0.5 g, 0.22 mmol) in chloroform (5 mL), to which toluene (5 mL) was added. The solution was stirred for 5 mins and left open under a stream of nitrogen overnight. Hexane (10 mL) was added to the residue and stirred for 1h, after which the solution was filtered. The solid was collected, washed with hexane and recrystallized from chloroform/toluene slow evaporation. Yield 0.35 g (65.4% based on $[Ru_2(O_2C^tBu)_4]BF_4$). Elemental anal. calculated (%) for $C_{194}H_{346}B_1Cr_{14}F_{20}N_4Ni_2O_{72}Ru_2$: C43.76 H6.55 Cr13.67 Ni2.20; Found: C43.75 H6.60 Cr13.40 Ni2.12

1.2.16 Synthesis of ${[^{n}Pr_{2}NH_{2}][Cr_{7}NiF_{8}(O_{2}C^{t}Bu)_{15}(O_{2}CC_{5}H_{4}N)]}_{2}[Rh_{2}(O_{2}CCH_{3})_{4}]$ 19

 $Rh_2(O_2CCH_3)_4$ (0.03 g, 0.068 mmol) was dissolved in 10 mL of THF. To this, **1** (0.55 g, 0.24 mmol) and 5 mL of THF were added and the solution stirred for 30 mins. After this, the solution was filtered and

to the filtrate 5 mL of toluene was added. The solution was left stirring under a stream of nitrogen for two days, after which all the solvent had been removed. Hexane (15 mL) was added to the residue and stirred for 1h, after which the solution was filtered. The solid was collected, washed with hexane and recrystallized from THF/toluene slow evaporation. Yield 0.31 g (89.9% based on $Rh_2(O_2CCH_3)_4$). Elemental anal. calculated (%) for $C_{182}H_{322}Cr_{14}F_{16}N_4Ni_2O_{72}Rh_2$: C43.08 H6.40 N1.10 Cr14.35 Ni2.31 Rh4.06; Found: C43.43 H6.56 N1.09 Cr14.38 Ni2.25 Rh3.96

1.2.17 Synthesis of {["Pr2NH2][Cr7NiF8(O2CtBu)15(O2CC2H2C5H4N)]}2[Cu2(O2CtBu)4] 20

 $Cu_2(O_2C^tBu)_4(HO_2C^tBu)_2$ (0.038 g, 0.052 mmol) was added to a solution of **2** (0.253 g, 0.108 mmol) in toluene (10 mL) with constant stirring. The solution was stirred at ambient temperature for 15 mins and refluxed for 5 mins. After this it was cooled to room temperature and left to slowly evaporate, after which crystals suitable for single crystal XRD formed. These were analysed and the remainder were collected and washed with acetone. Yield 0.038 g (17% based on $Cu_2(O_2C^tBu)_4(HO_2C^tBu)_2)$. Elemental anal. calculated (%) for $C_{198}H_{350}Cr_{14}Cu_2F_{16}N_4Ni_2O_{72}$: C45.60 H6.76 N1.07 Cr13.96 Cu2.44; Found: C45.70 H6.85 N1.02 Cr13.59 Cu2.48

1.2.18 Synthesis of ${[^{n}Pr_{2}NH_{2}][Cr_{7}NiF_{8}(O_{2}C^{t}Bu)_{15}(O_{2}CC_{4}H_{3}N_{2})]}_{2}[Cu_{2}(O_{2}C^{t}Bu)_{4}]$ 21

 $Cu_2(O_2C^tBu)_4(HO_2C^tBu)_2$ (0.039 g, 0.053 mmol) was added to a solution of **3** (0.250g, 0.108 mmol) in toluene (10 mL) with constant stirring. The solution was stirred at ambient temperature for 15 mins and refluxed for 5 mins. After this it was cooled to room temperature and left to slowly evaporate, after which crystals single crystal XRD formed. These were analysed and the remainder were collected by filtration and washed with acetone. Yield 0.125 g (44% based on $Cu_2(O_2C^tBu)_4(HO_2C^tBu)_2$). Elemental anal. calculated (%) for $C_{192}H_{344}Cr_{14}Cu_2F_{16}N_6Ni_2O_{72}$: C44.65 H6.71 N1.63 Cr14.09 Cu2.46; Found: C44.78 H6.84 N1.51 Cr13.27 Cu2.47

2. Crystallographic information

Table S1. Structural metrics for all compounds

Compound	1	2	3	4	5
Formula	$C_{87}H_{155}Cr_7F_8N_2NiO_{32}$	$C_{89}H_{157}Cr_7F_8N_2NiO_{32}$	$C_{86}H_{154}Cr_7F_8N_3NiO_{32}$	$C_{351}H_{626}Cr_{28}Cu_2F_{32}N_{12}Ni_4O_{142.50}$	$C_{177}H_{316}AgCr_{14}F_{16}N_5Ni_2O_{68}$
<i>M</i> _r	2315.84	2341.88	2316.82	9720.56	4859.54
Crystal System	monoclinic	monoclinic	monoclinic	triclinic	orthorhombic
Space Group	P2 ₁ /c	P2 ₁ /n	P2 ₁ /n	P-1	Pna2 ₁
a [Å]	25.141 (3)	25.2879 (14)	25.4134 (6)	16.5633 (6)	33.3454 (10)
b [Å]	17.059 (2)	16.7259 (9)	16.6467 (4)	34.1024 (10)	16.4902 (5)
<i>c</i> [Å]	30.727 (4)	30.8206 (15)	31.7318 (7)	48.3068 (19)	49.2045 (16)
α [°]	90	90	90	83.3020 (10)	90
в [°]	106.127 (2)	109.154 (6)	108.992 (2)	87.7560 (10)	90
γ [°]	90	90	90	90.499 (3)	90
<i>V</i> [ų]	12659 (3)	12314.3 (11)	12693.4 (5)	27078.3 (17)	27056.2 (15)
Ζ	4	4	4	2	4
$ ho_{ m calcd}$ [mg mm ⁻³]	1.215	1.263	1.212	1.192	1.193
T [K]	150	100	150	150	100
Goof on F ²	1.029	1.02	1.09	1.423	1.087
R ₁ [<i>I</i> >2σ (<i>I</i>)]	0.0986	0.0812	0.1296	0.1399	0.1071
wR ₂ [all data]	0.1416	0.2323	0.3419	0.3331	0.2904
Compound	6	7	8	9	10
Compound Formula	6 C ₁₉₆ H ₃₅₂ Cr ₁₄ CuF ₁₆ N ₆ Ni ₂ O ₇₈	7 C ₁₈₆ H ₃₂₄ Cr ₁₄ F ₁₆ N ₅ Ni ₃ O ₆₈	8 C ₁₈₄ H ₃₁₈ Cr ₁₄ F ₂₂ N ₄ Ni ₃ O ₆₈	9 C ₁₈₄ H ₃₁₂ Cr ₁₄ F ₂₈ N ₄ Ni ₃ O ₆₈	10 C ₁₈₄ H ₃₁₂ Cr ₁₄ CuF ₂₈ N ₄ Ni ₂ O ₆₈
Compound Formula <i>M</i> r	6 C ₁₉₆ H ₃₅₂ Cr ₁₄ CuF ₁₆ N ₆ Ni ₂ O ₇₈ 5253.75	7 C ₁₈₆ H ₃₂₄ Cr ₁₄ F ₁₆ N ₅ Ni ₃ O ₆₈ 4921.51	8 C ₁₈₄ H ₃₁₈ Cr ₁₄ F ₂₂ N ₄ Ni ₃ O ₆₈ 4996.51	9 C ₁₈₄ H ₃₁₂ Cr ₁₄ F ₂₈ N ₄ Ni ₃ O ₆₈ 5104.46	10 C ₁₈₄ H ₃₁₂ Cr ₁₄ CuF ₂₈ N ₄ Ni ₂ O ₆₈ 5109.32
Compound Formula <i>M</i> _r Crystal System	6 $C_{196}H_{352}Cr_{14}CuF_{16}N_6Ni_2O_{78}$ 5253.75 triclinic	7 C ₁₈₆ H ₃₂₄ Cr ₁₄ F ₁₆ N ₅ Ni ₃ O ₆₈ 4921.51 monoclinic	8 C ₁₈₄ H ₃₁₈ Cr ₁₄ F ₂₂ N ₄ Ni ₃ O ₆₈ 4996.51 monoclincic	9 C ₁₈₄ H ₃₁₂ Cr ₁₄ F ₂₈ N ₄ Ni ₃ O ₆₈ 5104.46 monoclinic	10 C ₁₈₄ H ₃₁₂ Cr ₁₄ CuF ₂₈ N ₄ Ni ₂ O ₆₈ 5109.32 triclinic
Compound Formula <i>M</i> _r Crystal System Space Group	6 $C_{196}H_{352}Cr_{14}CuF_{16}N_6Ni_2O_{78}$ 5253.75 triclinic P-1	7 $C_{186}H_{324}Cr_{14}F_{16}N_5Ni_3O_{68}$ 4921.51 monoclinic P2 ₁ /c	8 C ₁₈₄ H ₃₁₈ Cr ₁₄ F ₂₂ N ₄ Ni ₃ O ₆₈ 4996.51 monoclincic C2/c	9 C ₁₈₄ H ₃₁₂ Cr ₁₄ F ₂₈ N ₄ Ni ₃ O ₆₈ 5104.46 monoclinic C2/c	10 C ₁₈₄ H ₃₁₂ Cr ₁₄ CuF ₂₈ N ₄ Ni ₂ O ₆₈ 5109.32 triclinic P-1
Compound Formula <i>M</i> _r Crystal System Space Group <i>a</i> [Å]	6 C ₁₉₆ H ₃₅₂ Cr ₁₄ CuF ₁₆ N ₆ Ni ₂ O ₇₈ 5253.75 triclinic P-1 16.4760 (3)	7 $C_{186}H_{324}Cr_{14}F_{16}N_5Ni_3O_{68}$ 4921.51 monoclinic P2 ₁ /c 48.647(2)	8 $C_{184}H_{318}Cr_{14}F_{22}N_4Ni_3O_{68}$ 4996.51 monoclincic C2/c 60.078(3)	9 C ₁₈₄ H ₃₁₂ Cr ₁₄ F ₂₈ N ₄ Ni ₃ O ₆₈ 5104.46 monoclinic C2/c 60.628(4)	10 C ₁₈₄ H ₃₁₂ Cr ₁₄ CuF ₂₈ N ₄ Ni ₂ O ₆₈ 5109.32 triclinic P-1 16.4384 (6)
Compound Formula <i>M</i> _r Crystal System Space Group <i>a</i> [Å] <i>b</i> [Å]	6 C ₁₉₆ H ₃₅₂ Cr ₁₄ CuF ₁₆ N ₆ Ni ₂ O ₇₈ 5253.75 triclinic P-1 16.4760 (3) 25.5232 (5)	7 $C_{186}H_{324}Cr_{14}F_{16}N_5Ni_3O_{68}$ 4921.51 monoclinic $P2_1/c$ 48.647(2) 16.5985(5)	8 $C_{184}H_{318}Cr_{14}F_{22}N_4Ni_3O_{68}$ 4996.51 monoclincic C2/c 60.078(3) 16.6492(7)	9 C ₁₈₄ H ₃₁₂ Cr ₁₄ F ₂₈ N ₄ Ni ₃ O ₆₈ 5104.46 monoclinic C2/c 60.628(4) 16.8601(4)	10 C ₁₈₄ H ₃₁₂ Cr ₁₄ CuF ₂₈ N ₄ Ni ₂ O ₆₈ 5109.32 triclinic P-1 16.4384 (6) 16.7162 (6)
Compound Formula <i>M</i> _r Crystal System Space Group <i>a</i> [Å] <i>b</i> [Å] <i>c</i> [Å]	6 C ₁₉₆ H ₃₅₂ Cr ₁₄ CuF ₁₆ N ₆ Ni ₂ O ₇₈ 5253.75 triclinic P-1 16.4760 (3) 25.5232 (5) 33.6920 (5)	7 $C_{186}H_{324}Cr_{14}F_{16}N_5Ni_3O_{68}$ 4921.51 monoclinic $P2_1/c$ 48.647(2) 16.5985(5) 34.1665(11)	8 $C_{184}H_{318}Cr_{14}F_{22}N_4Ni_3O_{68}$ 4996.51 monoclincic C2/c 60.078(3) 16.6492(7) 30.617(2)	9 $C_{184}H_{312}Cr_{14}F_{28}N_4Ni_3O_{68}$ 5104.46 monoclinic C2/c 60.628(4) 16.8601(4) 30.7889(13)	10 C ₁₈₄ H ₃₁₂ Cr ₁₄ CuF ₂₈ N ₄ Ni ₂ O ₆₈ 5109.32 triclinic P-1 16.4384 (6) 16.7162 (6) 26.8666 (12)
Compound Formula <i>M</i> _r Crystal System Space Group <i>α</i> [Å] <i>b</i> [Å] <i>c</i> [Å] <i>α</i> [°]	6 C ₁₉₆ H ₃₅₂ Cr ₁₄ CuF ₁₆ N ₆ Ni ₂ O ₇₈ 5253.75 triclinic P-1 16.4760 (3) 25.5232 (5) 33.6920 (5) 96.7720 (10)	7 $C_{186}H_{324}Cr_{14}F_{16}N_5Ni_3O_{68}$ 4921.51 monoclinic P2 ₁ /c 48.647(2) 16.5985(5) 34.1665(11) 90	8 C ₁₈₄ H ₃₁₈ Cr ₁₄ F ₂₂ N ₄ Ni ₃ O ₆₈ 4996.51 monoclincic C2/c 60.078(3) 16.6492(7) 30.617(2) 90	9 C ₁₈₄ H ₃₁₂ Cr ₁₄ F ₂₈ N ₄ Ni ₃ O ₆₈ 5104.46 monoclinic C2/c 60.628(4) 16.8601(4) 30.7889(13) 90	10 C ₁₈₄ H ₃₁₂ Cr ₁₄ CuF ₂₈ N ₄ Ni ₂ O ₆₈ 5109.32 triclinic P-1 16.4384 (6) 16.7162 (6) 26.8666 (12) 99.150 (3)
Compound Formula <i>M</i> _r Crystal System Space Group <i>a</i> [Å] <i>b</i> [Å] <i>c</i> [Å] <i>c</i> [Å] β [°]	6 C ₁₉₆ H ₃₅₂ Cr ₁₄ CuF ₁₆ N ₆ Ni ₂ O ₇₈ 5253.75 triclinic P-1 16.4760 (3) 25.5232 (5) 33.6920 (5) 96.7720 (10) 90.4410 (10)	7 $C_{186}H_{324}Cr_{14}F_{16}N_5Ni_3O_{68}$ 4921.51 monoclinic $P2_1/c$ 48.647(2) 16.5985(5) 34.1665(11) 90 96.152(3)	8 C ₁₈₄ H ₃₁₈ Cr ₁₄ F ₂₂ N ₄ Ni ₃ O ₆₈ 4996.51 monoclincic C2/c 60.078(3) 16.6492(7) 30.617(2) 90 111.154(7)	9 C ₁₈₄ H ₃₁₂ Cr ₁₄ F ₂₈ N ₄ Ni ₃ O ₆₈ 5104.46 monoclinic C2/c 60.628(4) 16.8601(4) 30.7889(13) 90 111.487	10 C ₁₈₄ H ₃₁₂ Cr ₁₄ CuF ₂₈ N ₄ Ni ₂ O ₆₈ 5109.32 triclinic P-1 16.4384 (6) 16.7162 (6) 26.8666 (12) 99.150 (3) 98.927 (3)
Compound Formula <i>M</i> _r Crystal System Space Group <i>a</i> [Å] <i>b</i> [Å] <i>c</i> [Å] <i>c</i> [Å] <i>α</i> [°] β [°] γ [°]	6 C ₁₉₆ H ₃₅₂ Cr ₁₄ CuF ₁₆ N ₆ Ni ₂ O ₇₈ 5253.75 triclinic P-1 16.4760 (3) 25.5232 (5) 33.6920 (5) 96.7720 (10) 90.4410 (10) 105.705 (2)	7 $C_{186}H_{324}Cr_{14}F_{16}N_5Ni_3O_{68}$ 4921.51 monoclinic $P2_1/c$ 48.647(2) 16.5985(5) 34.1665(11) 90 96.152(3) 90	8 C ₁₈₄ H ₃₁₈ Cr ₁₄ F ₂₂ N ₄ Ni ₃ O ₆₈ 4996.51 monoclincic C2/c 60.078(3) 16.6492(7) 30.617(2) 90 111.154(7) 90	9 C ₁₈₄ H ₃₁₂ Cr ₁₄ F ₂₈ N ₄ Ni ₃ O ₆₈ 5104.46 monoclinic C2/c 60.628(4) 16.8601(4) 30.7889(13) 90 111.487 90	10 C ₁₈₄ H ₃₁₂ Cr ₁₄ CuF ₂₈ N ₄ Ni ₂ O ₆₈ 5109.32 triclinic P-1 16.4384 (6) 16.7162 (6) 26.8666 (12) 99.150 (3) 98.927 (3) 112.035 (2)
Compound Formula <i>M</i> _r Crystal System Space Group <i>a</i> [Å] <i>b</i> [Å] <i>c</i> [Å] <i>c</i> [Å] <i>α</i> [°] β [°] γ [°] γ [°]	6 C ₁₉₆ H ₃₅₂ Cr ₁₄ CuF ₁₆ N ₆ Ni ₂ O ₇₈ 5253.75 triclinic P-1 16.4760 (3) 25.5232 (5) 33.6920 (5) 96.7720 (10) 90.4410 (10) 105.705 (2) 13532.4 (4)	7 C ₁₈₆ H ₃₂₄ Cr ₁₄ F ₁₆ N ₅ Ni ₃ O ₆₈ 4921.51 monoclinic P2 ₁ /c 48.647(2) 16.5985(5) 34.1665(11) 90 96.152(3) 90 27429.7(17)	8 C ₁₈₄ H ₃₁₈ Cr ₁₄ F ₂₂ N ₄ Ni ₃ O ₆₈ 4996.51 monoclincic C2/c 60.078(3) 16.6492(7) 30.617(2) 90 111.154(7) 90 28561(3)	9 C ₁₈₄ H ₃₁₂ Cr ₁₄ F ₂₈ N ₄ Ni ₃ O ₆₈ 5104.46 monoclinic C2/c 60.628(4) 16.8601(4) 30.7889(13) 90 111.487 90 29285(2)	10 C ₁₈₄ H ₃₁₂ Cr ₁₄ CuF ₂₈ N ₄ Ni ₂ O ₆₈ 5109.32 triclinic P-1 16.4384 (6) 16.7162 (6) 26.8666 (12) 99.150 (3) 98.927 (3) 112.035 (2) 6567.5 (4)
Compound Formula <i>M</i> _r Crystal System Space Group <i>a</i> [Å] <i>b</i> [Å] <i>c</i> [Å] <i>c</i> [Å] <i>α</i> [°] β [°] <i>γ</i> [°] <i>γ</i> [Å] <i>Z</i>	6 C ₁₉₆ H ₃₅₂ Cr ₁₄ CuF ₁₆ N ₆ Ni ₂ O ₇₈ 5253.75 triclinic P-1 16.4760 (3) 25.5232 (5) 33.6920 (5) 96.7720 (10) 90.4410 (10) 105.705 (2) 13532.4 (4) 2	7 C ₁₈₆ H ₃₂₄ Cr ₁₄ F ₁₆ N ₅ Ni ₃ O ₆₈ 4921.51 monoclinic P2 ₁ /c 48.647(2) 16.5985(5) 34.1665(11) 90 96.152(3) 90 27429.7(17) 4	8 C ₁₈₄ H ₃₁₈ Cr ₁₄ F ₂₂ N ₄ Ni ₃ O ₆₈ 4996.51 monoclincic C2/c 60.078(3) 16.6492(7) 30.617(2) 90 111.154(7) 90 28561(3) 4	9 C ₁₈₄ H ₃₁₂ Cr ₁₄ F ₂₈ N ₄ Ni ₃ O ₆₈ 5104.46 monoclinic C2/c 60.628(4) 16.8601(4) 30.7889(13) 90 111.487 90 29285(2) 4	10 C ₁₈₄ H ₃₁₂ Cr ₁₄ CuF ₂₈ N ₄ Ni ₂ O ₆₈ 5109.32 triclinic P-1 16.4384 (6) 16.7162 (6) 26.8666 (12) 99.150 (3) 98.927 (3) 112.035 (2) 6567.5 (4) 1
Compound Formula <i>M</i> _r Crystal System Space Group <i>a</i> [Å] <i>b</i> [Å] <i>c</i> [Å] <i>c</i> [Å] <i>α</i> [°] <i>β</i> [°] <i>γ</i> [°] <i>γ</i> [Å] <i>Z</i> <i>ρ</i> _{calcd} [mg mm ⁻³]	6 C ₁₉₆ H ₃₅₂ Cr ₁₄ CuF ₁₆ N ₆ Ni ₂ O ₇₈ 5253.75 triclinic P-1 16.4760 (3) 25.5232 (5) 33.6920 (5) 96.7720 (10) 90.4410 (10) 105.705 (2) 13532.4 (4) 2 1.289	7 C ₁₈₆ H ₃₂₄ Cr ₁₄ F ₁₆ N ₅ Ni ₃ O ₆₈ 4921.51 monoclinic P2 ₁ /c 48.647(2) 16.5985(5) 34.1665(11) 90 96.152(3) 90 27429.7(17) 4 1.193	8 C ₁₈₄ H ₃₁₈ Cr ₁₄ F ₂₂ N ₄ Ni ₃ O ₆₈ 4996.51 monoclincic C2/c 60.078(3) 16.6492(7) 30.617(2) 90 111.154(7) 90 28561(3) 4 1.162	9 C ₁₈₄ H ₃₁₂ Cr ₁₄ F ₂₈ N ₄ Ni ₃ O ₆₈ 5104.46 monoclinic C2/c 60.628(4) 16.8601(4) 30.7889(13) 90 111.487 90 29285(2) 4 1.158	10 C ₁₈₄ H ₃₁₂ Cr ₁₄ CuF ₂₈ N ₄ Ni ₂ O ₆₈ 5109.32 triclinic P-1 16.4384 (6) 16.7162 (6) 26.8666 (12) 99.150 (3) 98.927 (3) 112.035 (2) 6567.5 (4) 1 1.292
Compound Formula <i>M</i> _r Crystal System Space Group <i>a</i> [Å] <i>b</i> [Å] <i>c</i> [Å] <i>c</i> [Å] <i>α</i> [°] β [°] <i>γ</i> [°] <i>γ</i> [Å3] <i>Z</i> <i>ρ</i> _{calcd} [mg mm ⁻³] <i>T</i> [K]	6 C ₁₉₆ H ₃₅₂ Cr ₁₄ CuF ₁₆ N ₆ Ni ₂ O ₇₈ 5253.75 triclinic P-1 16.4760 (3) 25.5232 (5) 33.6920 (5) 96.7720 (10) 90.4410 (10) 105.705 (2) 13532.4 (4) 2 1.289 100	7 C ₁₈₆ H ₃₂₄ Cr ₁₄ F ₁₆ N ₅ Ni ₃ O ₆₈ 4921.51 monoclinic P2 ₁ /c 48.647(2) 16.5985(5) 34.1665(11) 90 96.152(3) 90 27429.7(17) 4 1.193 100	8 C ₁₈₄ H ₃₁₈ Cr ₁₄ F ₂₂ N ₄ Ni ₃ O ₆₈ 4996.51 monoclincic C2/c 60.078(3) 16.6492(7) 30.617(2) 90 111.154(7) 90 28561(3) 4 1.162 100	9 C ₁₈₄ H ₃₁₂ Cr ₁₄ F ₂₈ N ₄ Ni ₃ O ₆₈ 5104.46 monoclinic C2/c 60.628(4) 16.8601(4) 30.7889(13) 90 111.487 90 29285(2) 4 1.158 100	10 C ₁₈₄ H ₃₁₂ Cr ₁₄ CuF ₂₈ N ₄ Ni ₂ O ₆₈ 5109.32 triclinic P-1 16.4384 (6) 16.7162 (6) 26.8666 (12) 99.150 (3) 98.927 (3) 112.035 (2) 6567.5 (4) 1 1.292 90
Compound Formula M_r Crystal System Space Group a [Å] b [Å] c [Å] c [Å] α [°] β [°] γ [°] V [Å ³] Z ρ_{calcd} [mg mm ⁻³] T [K] Goof on F^2	6 C ₁₉₆ H ₃₅₂ Cr ₁₄ CuF ₁₆ N ₆ Ni ₂ O ₇₈ 5253.75 triclinic P-1 16.4760 (3) 25.5232 (5) 33.6920 (5) 96.7720 (10) 90.4410 (10) 105.705 (2) 13532.4 (4) 2 1.289 100 1.12	7 C ₁₈₆ H ₃₂₄ Cr ₁₄ F ₁₆ N ₅ Ni ₃ O ₆₈ 4921.51 monoclinic P2 ₁ /c 48.647(2) 16.5985(5) 34.1665(11) 90 96.152(3) 90 27429.7(17) 4 1.193 100 1.002	8 C ₁₈₄ H ₃₁₈ Cr ₁₄ F ₂₂ N ₄ Ni ₃ O ₆₈ 4996.51 monoclincic C2/c 60.078(3) 16.6492(7) 30.617(2) 90 111.154(7) 90 28561(3) 4 1.162 100 0.996	9 C ₁₈₄ H ₃₁₂ Cr ₁₄ F ₂₈ N ₄ Ni ₃ O ₆₈ 5104.46 monoclinic C2/c 60.628(4) 16.8601(4) 30.7889(13) 90 111.487 90 29285(2) 4 1.158 100 1.087	10 C ₁₈₄ H ₃₁₂ Cr ₁₄ CuF ₂₈ N ₄ Ni ₂ O ₆₈ 5109.32 triclinic P-1 16.4384 (6) 16.7162 (6) 26.8666 (12) 99.150 (3) 98.927 (3) 112.035 (2) 6567.5 (4) 1 1.292 90 1.059
Compound Formula M_r Crystal System Space Group a [Å] b [Å] c [Å] c [Å] α [°] β [°] γ [°] V [Å ³] Z ρ_{calcd} [mg mm ⁻³] T [K] Goof on F^2 R_1 [/>2 σ (/)]	6 C ₁₉₆ H ₃₅₂ Cr ₁₄ CuF ₁₆ N ₆ Ni ₂ O ₇₈ 5253.75 triclinic P-1 16.4760 (3) 25.5232 (5) 33.6920 (5) 96.7720 (10) 90.4410 (10) 105.705 (2) 13532.4 (4) 2 1.289 100 1.12 0.0914	7 C ₁₈₆ H ₃₂₄ Cr ₁₄ F ₁₆ N ₅ Ni ₃ O ₆₈ 4921.51 monoclinic P2 ₁ /c 48.647(2) 16.5985(5) 34.1665(11) 90 96.152(3) 90 27429.7(17) 4 1.193 100 1.002 0.0742	8 C ₁₈₄ H ₃₁₈ Cr ₁₄ F ₂₂ N ₄ Ni ₃ O ₆₈ 4996.51 monoclincic C2/c 60.078(3) 16.6492(7) 30.617(2) 90 111.154(7) 90 28561(3) 4 1.162 100 0.996 0.0913	9 C ₁₈₄ H ₃₁₂ Cr ₁₄ F ₂₈ N ₄ Ni ₃ O ₆₈ 5104.46 monoclinic C2/c 60.628(4) 16.8601(4) 30.7889(13) 90 111.487 90 29285(2) 4 1.158 100 1.087 0.1208	10 C ₁₈₄ H ₃₁₂ Cr ₁₄ CuF ₂₈ N ₄ Ni ₂ O ₆₈ 5109.32 triclinic P-1 16.4384 (6) 16.7162 (6) 26.8666 (12) 99.150 (3) 98.927 (3) 112.035 (2) 6567.5 (4) 1 1.292 90 1.059 0.0685

Table S1. conto	1.				
Compound	11	12	14	15	16
Formula	$C_{184}H_{312}Cr_{14}F_{28}MnN_4Ni_2O_{68}$	$C_{182}H_{312}Cr_{14}F_{28}N_6Ni_3O_{68}$	$C_{177}H_{310}ClCr_{14}F_{16}N_4Ni_2O_{67}Re$	$C_{208}H_{362}Cr_{14}Cu_2F_{16}N_4Ni_2O_{74}$	$C_{200}H_{358}Cr_{14}F_{16}N_4Ni_4O_{74}$
M _r	5100.71	2106.51	4937.27	5379.52	5269.68
Crystal System	triclinic	orthorhombic	monoclinic	monoclinic	orthorhombic
Space Group	P-1	Pccn	P2 ₁ /c	C2/c	Pnnm
a [Å]	16.5428 (5)	55.0070 (14)	30.477 (5)	60.9040 (8)	47.9643 (14)
b [Å]	16.6931 (5)	17.2341 (4)	16.591 (3)	16.9000 (2)	16.6262 (5)
<i>c</i> [Å]	26.9382 (11)	30.5232 (8)	53.880 (8)	30.7200 (5)	26.0764 (8)
α [°]	99.731 (2)	90	90	90	90
в [°]	98.643 (2)	90	99.480 (2)	103.8030 (10)	90
γ [°]	111.648 (2)	90	90	90	90
V [ų]	6628.7 (4)	28935.9 (13)	26872 (7)	30706.3 (7)	20795.0 (11)
Ζ	1	2	4	4	2
$ ho_{ m calcd}$ [mg mm ⁻³]	1.278	1.172	1.22	1.164	0.842
<i>T</i> [K]	90	100	150	150	100
Goof on F ²	1.09	1.122	0.997	1.264	1.124
R ₁ [<i>I</i> >2σ (<i>I</i>)]	0.08	0.0588	0.1562	0.0981	0.1564
wR ₂ [all data]	0.24	0.1876	0.4007	0.2669	0.4114
Compound	17	18	19	20	21
Formula	$C_{194}H_{346}Co_2Cr_{14}F_{16}N_4Ni_2O_{72}$	$B_1C_{196}H_{348}Cl_6Cr_{14}F_{20}N_4Ni_2O_{72}Ru_2$	$C_{182}H_{322}Cr_{14}F_{16}N_4Ni_2O_{72}Rh_2$	$C_{212}H_{366}Cr_{14}Cu_2F_{16}N_4Ni_2O_{72}$	$C_{192}H_{344}Cr_{14}Cu_2F_{16}N_6Ni_2O_{72}$

Compound	1/	10	19	20	21
Formula	$C_{194}H_{346}Co_2Cr_{14}F_{16}N_4Ni_2O_{72}$	$B_1C_{196}H_{348}Cl_6Cr_{14}F_{20}N_4Ni_2O_{72}Ru_2$	$C_{182}H_{322}Cr_{14}F_{16}N_4Ni_2O_{72}Rh_2$	$C_{212}H_{366}Cr_{14}Cu_2F_{16}N_4Ni_2O_{72}$	$C_{192}H_{344}Cr_{14}Cu_2F_{16}N_6Ni_2O_{72}$
<i>M</i> _r	5154.01	5563.8	5073.68	5399.59	5165.23
Crystal System	tetragonal	monoclinic	monoclinic	monoclinic	monoclinic
Space Group	I4 ₁ /a	C2/c	C2/c	P21/c	C2/c
a [Å]	58.317 (6)	61.511 (3)	56.127 (7)	31.2667 (15)	60.7106 (12)
b [Å]	58.317 (6)	17.0854 (5)	16.2525 (19)	17.5635 (9)	16.7468 (4)
<i>c</i> [Å]	16.7336 (18)	30.5948 (8)	31.418 (4)	30.8297 (15)	30.4987 (9)
α [°]	90	90	90	90	90
β [°]	90	104.182 (4)	111.474 (2)	117.007 (2)	103.9900 (9)
γ[°]	90	90	90	90	90
V [ų]	56908 (14)	31193.5 (19)	26670 (5)	15084.0 (13)	30088.5 (13)
Ζ	8	4	4	2	4
$ ho_{ m calcd}$ [mg mm ⁻³]	1.203	1.166	1.264	1.189	1.14
7 [K]	150	100	100	100	100
Goof on F ²	1.04	1.078	1.041	1.015	1.253
R1 [I>20 (I)]	0.0791	0.0816	0.0697	0.0805	0.1339
wR ₂ [all data]	0.1616	0.2659	0.2173	0.264	0.4096