Electronic Supplementary Information for

B-site ordered double perovskite LaBa_{1-x}Sr_xZnSbO₆ ($0 \le x \le 1$): Sr²⁺-doping-induced symmetry evolution and structureluminescence correlations

Pengfei Jiang, Zhengyang Zhou, Wenliang Gao, Rihong Cong,* Tao Yang*

College of Chemistry and Chemical Engineering, Chongqing University, Chongqing

400044, P. R. China

*Correspondence authors, Email: congrihong@cqu.edu.cn; taoyang@cqu.edu.cn; Tel:

(8623)65105065, Fax: (8623)65105065.

Formula	a (Å)	<i>b</i> (Å)	<i>c</i> (Å)	$V(Å^3)$	β (°)
La _{0.95} Eu _{0.05} BaZnSbO ₆	5.7093	5.7092	8.0735	263.16	89.893
La0.95Eu0.05Ba0.8Sr0.2ZnSbO6	5.6977	5.6943	8.0576	261.42	90.138
$La_{0.95}Eu_{0.05}Ba_{0.6}Sr_{0.4}ZnSbO_{6}$	5.6908	5.6850	8.0632	260.86	90.219
La0.95Eu0.05Ba0.4Sr0.6ZnSbO6	5.6798	5.6740	8.0276	258.71	90.011
$La_{0.95}Eu_{0.05}Ba_{0.2}Sr_{0.8}ZnSbO_{6}$	5.6739	5.6702	8.0219	258.08	90.040
La0.975Eu0.025SrZnSbO6	5.6564	5.6567	7.9991	255.94	89.976
$La_{0.95}Eu_{0.05}SrZnSbO_6$	5.6566	5.6569	7.9977	255.92	89.995
$La_{0.92}Eu_{0.08}SrZnSbO_{6}$	5.6537	5.6552	7.9941	255.59	90.006

Table S1 Lattice parameters of Eu³⁺ doped samples obtained by Le-Bail fitting.

Table S2 Atomic coordinates, isotropic thermal displacement factors and site occupancies for LaBa_{1-x}Sr_xZnSbO₆ (x = 0.2, 0.4, 0.6, 0.8).

LaBa _{0.8} Sr _{0.2} ZnSbO ₆	x	у	Z.	Occupancy	$B_{\rm eq}({\rm \AA}^2)$
Ba/La/Sr	0.499(1)	0	0.2495(4)	0.4/0.5/0.1	0.014(1)
Zn	0	0	0	1	0.014(1)
Sb	0	0	0.5	1	00.011(3)
O1	0.063(2)	0	0.256(3)	1	0.018(1)
O2	0.275(2)	0.236(2)	0.971(1)	1	0.018(1)
LaBa _{0.6} Sr _{0.4} ZnSbO ₆	x	У	Z	Occupancy	$B_{\rm eq}({ m \AA}^2)$
Ba/La/Sr	0.498(1)	0	0.2492(3)	0.3/0.5/0.2	0.014(1)
Zn	0	0	0	1	0.014(1)
Sb	0	0	0.5	1	0.011(1)
01	0.066(2)	0	0.251(3)	1	0.022(1)
02	0.264(3)	0.246(2)	0.031(1)	1	0.022(1)

LaBa_{0.4}Sr_{0.6}ZnSbO₆ x

y z

Occupancy B_{eq} (Å²)

Ba/La/Sr	0.001(1)	0.5140(3)	0.2519(7)	0.2/0.5/0.3	0.009(1)
Zn	0	0	0	1	0.005(1)
Sb	0	0	0.5	1	0.003(1)
O1	0.081(4)	0.991(3)	0.262(5)	1	0.005(3)
O2	0.759(6)	0.275(5)	0.007(4)	1	0.005(3)
O3	0.277(5)	0.231(5)	0.954(3)	1	0.005(3)
$LaBa_{0.2}Sr_{0.8}ZnSbO_{6}$	x	у	Z.	Occupancy	$B_{\rm eq}({\rm \AA}^2)$
Ba/La/Sr	0.005(2)	0.5202(2)	0.253(1)	0.1/0.5/0.4	0.008(1)
Zn	0	0	0	1	0.006(1)
Sb	0	0	0.5	1	0.0043(9)
O1	0.090(3)	0.995(2)	0.253(4)	1	0.003(2)
O2	0.759(5)	0.272(4)	0.005(3)	1	0.003(2)
O3	0.293(4)	0.228(4)	0.954(3)	1	0.003(2)

Table S3 Selected interatomic distances (Å) and bond angles (°) for LaBa_{1-x}Sr_xZnSbO₆ (x = 0.2, 0.4, 0.6, 0.8). Calculated bond valence sums (BVS) for Zn²⁺ and Sb⁵⁺ are also given.

LaBa0.8Sr0.2ZnSbO6	i		
La/Ba/Sr-O2 ×2	2.61(1)	Zn-O1 ×2	2.11(2)
La/Ba/Sr -O2 \times 2	2.79(1)	Zn-O2 ×4	2.08(1)
La/Ba/Sr -O2 \times 2	2.94(1)	BVS	2.09
La/Ba/Sr -O2 \times 2	3.10(1)	Sb-O1 ×2	1.98(2)
La/Ba/Sr -O1 ×1	2.8(2)	Sb-O2 ×4	1.99(1)
La/Ba/Sr -O1 ×2	2.87(2)	BVS	5.33
La/Ba/Sr -O1 ×1	3.43(2)	Zn-O1- Sb	158.9
		Zn-O2- Sb	165.3

LaBa0.6Sr0.4ZnSbO6

La/Ba/Sr -O2 $\times 2$	2.57(1)	Zn-O1 ×2	2.09(2)
La/Ba/Sr -O2 $\times 2$	2.81(1)	Zn-O2 ×4	2.08(1)
La/Ba/Sr -O2 ×2	2.91(1)	BVS	2.16
La/Ba/Sr -O2 \times 2	3.12(1)	Sb-O1 ×2	1.99(2)
La/Ba/Sr -O1 ×1	2.49(2)	Sb-O2 ×4	1.99(1)
La/Ba/Sr -O1 ×2	2.86(2)	BVS	2.25
La/Ba/Sr -O1 ×1	3.23(2)	Zn-O1- Sb	159.7
		Zn-O2- Sb	163.9

LaBa0.4Sr0.6ZnSbO6

La/Ba/Sr-O1	2.39(2)	Zn-O1 ×2	2.15(4)
La/Ba/Sr-O1	2.75(2)	Zn-O2 ×2	2.08(3)
La/Ba/Sr-O1	3.00(2)	Zn-O3 ×2	2.09(3)
La/Ba/Sr-O1	3.31(2)	BVS	2.04
La/Ba/Sr-O2	2.75(3)	Sb-O1 ×2	1.97(4)
La/Ba/Sr-O2	2.76(3)	Sb-O2 ×2	1.95(3)
La/Ba/Sr-O2	2.85(3)	Sb-O3 ×2	2.02(3)
La/Ba/Sr-O2	3.01(3)	BVS	5.44
La/Ba/Sr-O3	2.49(3)	Zn-O1- Sb	154.0
La/Ba/Sr-O3	2.71(3)	Zn-O2- Sb	171.5
La/Ba/Sr-O3	2.95(3)	Zn-O3- Sb	156.8
La/Ba/Sr-O3	3.28(3)		

LaBa0.2Sr0.8ZnSbO6

La/Ba/Sr-O1	2.30(2)	Zn-O1 ×2	2.09(3)
La/Ba/Sr-O1	2.73(2)	Zn-O2 ×2	2.06(3)
La/Ba/Sr-O1	3.02(2)	Zn-O3 ×2	2.14(2)
La/Ba/Sr-O2	2.73(3)	BVS	2.08

La/Ba/Sr-O3	3.34(2)	Zn-O3- Sb	154.7
La/Ba/Sr-O3	2.87(3)	Zn-O2- Sb	172.4
La/Ba/Sr-O3	2.77(3)	Zn-O1- Sb	151.3
La/Ba/Sr-O3	2.46(3)	BVS	5.28
La/Ba/Sr-O2	2.99(3)	Sb-O3 ×2	1.97(2)
La/Ba/Sr-O2	2.83(3)	Sb-O2 ×2	1.96(3)
La/Ba/Sr-O2	2.80(3)	Sb-O1 ×2	2.04(3)

Table S4 Lattice parameters of LaBa_{1-x}Sr_xZnSbO₆ ($0 \le x \le 1$) obtained by Rietveld

refinement.

Formula	a (Å)	<i>b</i> (Å)	<i>c</i> (Å)	$V(\text{\AA}^3)$	β (°)
LaBaZnSbO ₆	5.7253(2)	5.7066(3)	8.0689(3)	263.63(2)	90.00(4)
$LaBa_{0.8}Sr_{0.2}ZnSbO_{6} \\$	5.7247(1)	5.6960(1)	8.0533(2)	262.602(9)	90.01(1)
$LaBa_{0.6}Sr_{0.4}ZnSbO_{6} \\$	5.7132(1)	5.6807(1)	8.0318(2)	260.67(1)	90.035(6)
$LaBa_{0.4}Sr_{0.6}ZnSbO_{6}$	5.6945(2)	5.6731(2)	8.0225(3)	259.17(2)	89.99(2)
$LaBa_{0.2}Sr_{0.8}ZnSbO_{6}$	5.6750(2)	5.6667(2)	8.0126(2)	257.67(1)	89.961(6)
LaSrZnSbO ₆	5.6586(2)	5.6577(2)	7.9964(2)	256.00(2)	90.00(2)

Fig. S1 Selected views in the reciprocal space corresponding to (a) 1kl and (b) 2kl planes for LaBaZnSbO₆. The reflection condition is consistent with h + k + l = 2n.

Fig. S2 XRD patterns for $La_{0.95}Eu_{0.05}Ba_{1-x}Sr_xZnSbO_6$ ($0 \le x \le 1$) and $La_{1-x}Eu_xSrZnSbO_6$ (x = 0.025, 0.05, 0.08).

Fig. S3 Final convergence of Rietveld refinement for LaBa_{1-x}Sr_xZnSbO₆ (x = 0.2, 0.4, 0.6, 0.8). The blue symbol \circ represents observed data and the red solid line is the calculated pattern; the blue marks below the diffraction patterns are the expected reflection positions, and the difference curve is also shown at the bottom. Enlargements of the high angle part are shown in the top-right corner.

Fig. S4 (a) emission spectra of $La_{0.95}Eu_{0.05}Ba_{1-x}Sr_xZnSbO_6$ excited by 394 nm; (b) total emission intensities excited under 394 nm along with the content of Sr^{3+} .

Fig. S5 Excitation (left) and emission (right) spectra for $La_{1-x}Eu_xSrZnSbO_6$ (x = 0.025, 0.05, 0.08).