Supporting Information

Sterically-constrained tripodal phosphorus-bridged tris-pyridyl ligands

Schirin Hanf,^a Raúl García-Rodríguez,^a Andrew D. Bond,^a Evamarie Hey-Hawkins^{b,*} and Dominic S. Wright^{a,*}

- ^{a.} Chemistry Department, Cambridge University, Lensfield Road, CB2 1EW, Cambridge, UK.
- ^{b.} Institute of Inorganic Chemistry, Faculty of Chemistry and Mineralogy, Leipzig University, Johannisallee 29, 04103 Leipzig, Germany.

Representative NMR spectra for selected compounds

NMR spectra of P(2-py)₃ (1)

Figure S3: ¹³*C*{¹*H*} *NMR* (298 K, *CDCl*₃, 125.78 MHz) spectrum of *P*(2-*py*)₃ (**1**).

Figure S4: ¹*H*-¹*H* COSY (298 K, CDCl₃, 500.20 MHz) spectrum of P(2-py)₃ (**1**).

Figure S5: ¹H-¹³C HMQC (298 K, CDCl₃, 500.20 MHz) spectrum of P(2-py)₃ (1).

Figure S6: ¹*H*-¹³*C HMBC* (298 K, *CDCl*₃, 500.20 MHz) spectrum of *P*(2-*py*)₃ (**1**).

NMR spectra of P(6-Me-2-py)₃ (2)

Figure S9: ¹³C{¹H} NMR (298 K, CDCl₃, 125.78 MHz) spectrum of P(6-Me-2-py)₃ (2).

Figure S10: ¹H-¹³C HMQC (298 K, CDCl₃, 500.20 MHz) spectrum of P(6-Me-2-py)₃ (2).

Figure S11: ¹H-¹³C HMBC (298 K, CDCl₃, 500.20 MHz) spectrum of P(6-Me-2-py)₃ (2).

240 220 200 180 160 140 120 100 80 60 40 20 0 -20 -40 -60 -80 -100 -120 -140 -160 -180 -200 -220 -2² f1 (ppm)

Figure S13: ³¹P{¹H} NMR (298 K, CD₃COCD₃, 202.48 MHz) spectrum of P(6-Br-2-py)₃ (3).

Figure S14: ¹H-³¹P{¹H} HMQC (298 K, CD₃COCD₃, 500.20 MHz) spectrum of P(6-Br-2-py)₃ (**3**).

Figure S15: ¹H NMR (298 K, CD₃COCD₃, 500.20 MHz) spectrum of [{P(2-py)₃}₂Fe](OTf)₂ (4).

S6

240 220 200 180 160 140 120 100 80 60 40 20 0 -20 -40 -60 -80 -100 -120 -140 -160 -180 -200 -220 -2* f1 (ppm)

Figure S16: ³¹*P*{¹*H*} *NMR* (298 K, *CD*₃*COCD*₃, 202.48 *MHz*) spectrum of [{*P*(2-*py*)₃}*Pe*](*OTf*)₂(*4*).

Figure S17: ¹³C{¹H} NMR (298 K, CD₃COCD₃, 125.78 MHz) spectrum of [{P(2-py)₃}₂Fe](OTf)₂(4).

Figure S18: ¹H- ¹³C HMQC (298 K, CD₃COCD₃, 500.20 MHz) spectrum of [{P(2-py)₃}₂Fe](OTf)₂(4).

Figure S19: ¹H-¹³C HMBC (298 K, CD₃COCD₃, 500.20 MHz) spectrum of [{P(2-py)₃}₂Fe](OTf)₂ (**4**).

Figure S20: ¹H-¹H COSY (298 K, CD₃COCD₃, 500.20 MHz) spectrum of [{P(2-py)₃}₂Fe](OTf)₂(4).

NMR spectra of $[(MeCN)_3Cu{P(6-Me-2-py)_3}Cu(MeCN)](PF_6)_2(7)$

Figure S21: ¹H NMR (298 K, CD₃CN, 400.13 MHz) spectrum of $[(MeCN)_3Cu{P(6-Me-2-py)_3}Cu(MeCN)](PF_6)_2(7)$.

Note: The acetonitrile solvent residual signal overlaps with the signal of the coordinated CH_3CN molecules at 1.99 ppm. Furthermore, the peak at 5.46 ppm arises from CH_2Cl_2 .

Figure S22: ³¹*P*{¹*H*} *NMR* (298 K, CD₃CN, 202.48 MHz) spectrum of [(MeCN)₃Cu{P(6-Me-2-py)₃}Cu(MeCN)](PF₆)₂(7).

Figure S23: ¹³C{¹H} NMR (298 K, CD₃CN, 125.78 MHz) spectrum of [(MeCN)₃Cu{P(6-Me-2-py)₃}Cu(MeCN)](PF₆)₂(7).

Note: The solvent residual peak of acetonitrile (septet at 1.32 ppm) overlaps with the signal of the coordinated CH_3CN molecules (1.77 ppm). The same observation was made for the second solvent residual peak of acetonitrile, which also overlaps with the signal of the coordinated CH_3CN molecules at 118.36 ppm.

Figure S24: ¹H-¹H COSY (298 K, CD₃CN, 400.13 MHz) spectrum of [(MeCN)₃Cu{P(6-Me-2-py)₃}Cu(MeCN)](PF₆)₂ (7).

Figure S25: Section of the ¹H-¹H NOESY (298 K, CD₃CN, 400.13 MHz) spectrum of $[(MeCN)_3CuP(6-Me-2-py)_3Cu(MeCN)](PF_6)_2$ (7).

Note: The crosspeak between H(5) and the CH_3 group of the P(6-Me-2-py)₃ ligand (2) in the ¹H- ¹H NOESY spectrum of **7** arises from intramolecular cross-relaxation of protons, which are in close spatial proximity. The observation of this crosspeak confirms the assignment of H(5). This was the only crosspeak observed between a pyridyl-H and the 6-CH₃-group.

Figure S26: ¹H- ¹³C HMQC (298 K, CD₃CN, 500.20 MHz) spectrum of [(MeCN)₃Cu{P(6-Me-2-py)₃}Cu(MeCN)](PF₆) (7).

Figure S27: ¹H-¹³C HMBC (298 K, CD₃CN, 500.20 MHz) spectrum of [(MeCN)₃Cu{P(6-Me-2-py)₃}Cu(MeCN)](PF₆) (7).

UV-visible spectroscopy

Figure S28: UV-visible spectra of the ligands 1 (blue) and 2 (red). Spectra were recorded in CH_2Cl_2 (both at a concentration of $5.0 \cdot 10^{-5}$ mol L⁻¹). Background solvent corrections were applied.

	Table S1: Molar extinction	coefficients calculated fro	m UV-visible spectra (all at a	a concentration of 5.0 \cdot 10 ⁻⁵ mol L ⁻¹)
--	----------------------------	-----------------------------	--------------------------------	---

Compound	Solvent	Wavelength λ [nm]	Absorbance	Molar extinction coefficient $\mathbf{\epsilon} \begin{bmatrix} L\\ cm \cdot mol \end{bmatrix}$
1	CH ₂ Cl ₂	268.0	0.649	12976.5
2	CH ₂ Cl ₂	281.0	0.905	18107.2
4	CH ₂ Cl ₂	475.0 379.9 300.9 267.0	0.592 0.411 0.155 1.850	11834.3 8227.6 3091.5 37003.1
4	МеОН	476.0 382.0 297.0 267.0	0.491 0.338 0.179 1.598	9816.5 6751.2 3579.5 31915.5
5-toluene	CH₃CN	367.1 313.9 276.0	0.455 0.784 1.519	9102.5 15682.3 30379.6
6-2THF	MeOH	276.9	0.434	8685.3
7	CH₃CN	363.0 276.9	0.202 1.517	4036.6 30344.8

Single-crystal X-ray crystallography

Table S2: Crystallographic parameters.

Compound reference	2	3	4	5.toluene	6.2THF	7
Chemical formula	C ₁₈ H ₁₈ N ₃ P	$C_{15}H_9Br_3N_3P$	C ₃₀ H ₂₄ FeN ₆ P ₂ ²⁺	C ₁₈ H ₁₈ Cl₂FeN ₃ P·	C ₁₉ H ₁₈ ClF ₃ FeN ₃ O	C ₂₆ H ₃₀ Cu ₂ N ₇ P
			(CF ₃ O ₃ S [−]) ₂	C ₇ H ₈	₃ PS·C ₄ H ₈ O	²⁺ (PF ₆ ⁻) ₂
Formula mass	307.32	501.95	884.48	526.21	619.80	888.56
Crystal system	trigonal	trigonal	monoclinic	triclinic	monoclinic	triclinic
a/Å	30.7488(8)	15.7876(6)	17.6327(9)	8.0155(3)	13.7879(4)	8.2686(5)
b/Å	30.7488(8)	15.7876(6)	20.0111(11)	10.7101(4)	8.6473(2)	14.9441(9)
c/Å	11.8199(4)	11.1637(5)	19.8093(10)	15.0458(6)	22.5638(6)	14.9496(8)
α/°	90	90	90	98.595(2)	90	78.976(2)
β/°	90	90	91.836(2)	99.108(2)	95.0326(12)	80.942(2)
γ/°	120	120	90	91.742(2)	90	84.159(2)
Unit cell volume/Å ³	9678.3(6)	2409.7(2)	6986.1(6)	1259.09(8)	2679.87(12)	1785.67(18)
Temperature/K	180(2)	180(2)	180(2)	180(2)	180(2)	180(2)
Space group	R3c	R3c	P2 ₁ /n	P-1	P2/c	P-1

Z	24	6	8	2	4	2
Radiation type	CuKα	CuKα	CuKα	CuKα	CuKα	CuKα
Absorption coefficient, μ/mm^{-1}	1.495	10.247	6.234	7.489	7.225	3.598
No. of reflections measured	25014	7204	102080	14275	22620	15956
No. of reflections measured	55614	7304	102969	14575	52029	43630
No. of independent	3769	941	12364	4367	4745	6267
reflections						
R _{int}	0.036	0.062	0.054	0.042	0.036	0.031
Final R1 values (I > $2\sigma(I)$)	0.028	0.033	0.039	0.045	0.036	0.049
Final wR(F ²) values (I > $2\sigma(I)$)	0.072	0.061	0.094	0.092	0.088	0.126
Final R1 values (all data)	0.031	0.039	0.052	0.059	0.042	0.054
Final wR(F ²) values (all data)	0.074	0.062	0.102	0.098	0.094	0.130
Goodness of fit on F ²	1.05	1.09	1.02	1.06	1.07	1.03
Flack x determined using	0.03(1)	-0.01(3)				
quotients [(I+)-(I-)]/[(I+)+(I-)]						

Note regarding the structures of 2 and 3

The structures of **2** (methyl derivative) and **3** (bromo derivative) are very closely comparable. However, **2** appears to adopt a superstructure with a unit-cell volume four times that of **3**. While **3** contains only $\frac{1}{2}$ of a molecule in the asymmetric unit, **2** contains 1+ $\frac{1}{2}$. The structure of **2** contains local translations that amount to *C*-centring ($\frac{1}{2},\frac{1}{2},0$) in the reported *R*-centred cell. If these translations are considered to be real, the structure can be described with a subcell essentially identical to **3**. However, reconstructed precession images show clearly that the additional diffraction peaks are present and that the supercell is appropriate (Figure S29). For **3**, there is no sign of any additional diffraction peaks to indicate a larger cell. Thus, we conclude that the supercell structure for **2** is genuine, at least for the crystal examined. Refining **2** in the smaller cell analogous to **3** does produce a satisfactory refinement, but with somewhat elongated displacement ellipsoids, especially for the methyl group (of which there is only one unique in that representation) (Figure S30).

Figure S29: Reconstructed precession images for **2**, showing the consistency between the diffraction pattern and the reported supercell description indicated by the predicted reflection positions (green circles). No such additional spots appear in the diffraction pattern of **3**.

Figure S30. Displacement ellipsoid plot for the asymmetric unit of 2 in the subcell analogous to 3.

