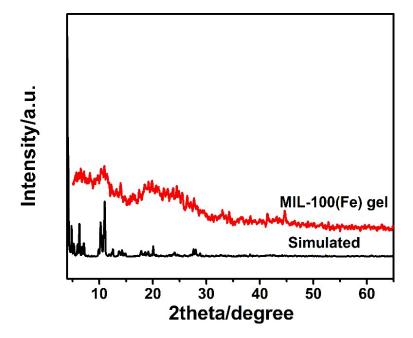
Electronic Supplementary Material (ESI) for Dalton Transactions. This journal is © The Royal Society of Chemistry 2016


Supplementary information

Metal-organic gel templated synthesis of magnetic porous carbon for highly efficient removal of organic dyes

Luhuan Wang,^a Fei Ke,^b Junfa Zhu^{a,*}

^{a.} National Synchrotron Radiation Laboratory and Collaborative Innovation Center of Suzhou Nano Science and Technology, University of Science and Technology of China, Hefei 230029, P.R. China. E-mail: jfzhu@ustc.edu.cn; Fax: +86-551-5141078

b. Department of Applied Chemistry, Anhui Agricultural University, Hefei 230036, P.R. China.

Fig. S1 PXRD patterns of the as-synthesized MIL-100(Fe) gel by hydrothermal method and the XRD pattern simulated from crystal structure data of MIL-100(Fe).

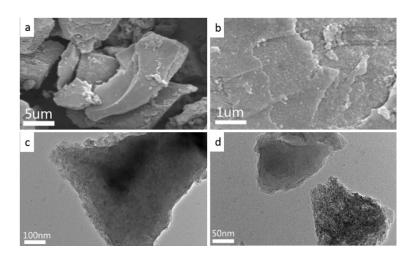


Fig. S2 (a,b) SEM, (c,d) of TEM images of MIL-100(Fe) gel.

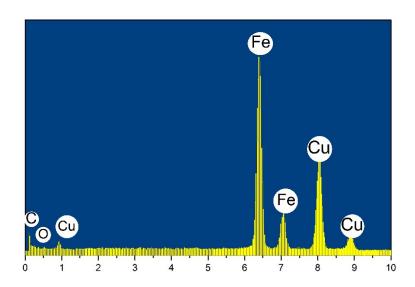
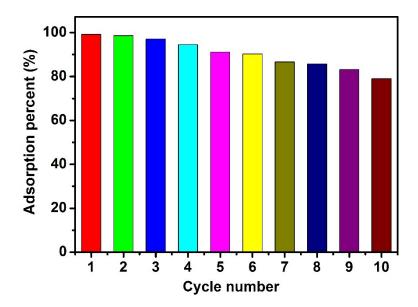



Fig. S3 EDX spectra of magnetic porous carbon.

Table S1 Elemental analysis of the magnetic porous carbon.

Element	Fe	С	Н	N	0
Content (wt %)	52.54	42.13	0.44	0.24	4.65

Fig. S4 Recyclability experiments for 10 cycles of the original and regenerated adsorbent magnetic porous carbon for the adsorption of MO (25ppm).

Table S2 Summary of adsorption capacity of magnetic porous carbons reported previously and investigated in the present work for adsorption of several organic dyes.

·	•		
Sample	Dyes	Adsorption	Reference
		capacity	S
		(mg g ⁻¹)	
Magnetic hierarchical porous carbon Fe ₃ O ₄ /C	Methyl	152	39
	orange		
Magnetic beads containing magnetic nanoparticles	Methyl	0.65	40
and activated carbon	orange		
Magnetic multi-walled carbon nanotubes	Methyl	81	41
	orange		
Chitosan wrapping magnetic nanosized $\alpha\text{-}\operatorname{Fe}_2O_3$ and	Methyl	66	42
multi-walled carbon nanotubes	orange		
Magnetic alginate beads crosslinked with	Methyl	6.5	43
epichlorohydrin	orange		
Cobalt nanosized particles	Methyl	170	44
	orange		
Magnetic Ni-containing ordered mesoporous	Methyl	107	45
carbons (Ni/OMCs)	orange		
Magnetic α-Fe ₂ O ₃ /crosslinked chitosan composites	Methyl	29.5	46
	orange		
Activated carbon/ Fe ₃ O ₄ (modified by	Methyl	182-242	47
HNO₃)nanoparticle composites	orange		
Magnetic CoFe ₂ O ₄ -functionalized	Methyl	71	48
graphenesheets(CoFe₂O₄−FGS)	orange		
α-Fe ₂ O ₃ /SiO ₂ /chitosan composite	Methyl	34.3	49
	orange		
Magnetic cellulose beads entrapping activated	Methyl	2.1	50
carbon γ-Fe ₂ O ₃ /C	orange		
Metal-organic gel derived magnetic particles	Methyl	182.8	This work
embedded porous carbon (γ -Fe ₂ O ₃ /Fe ₃ C/ α -	orange		
Fe/C)materials			