Electronic Supplementary Material (ESI) for Dalton Transactions. This journal is © The Royal Society of Chemistry 2016

Supplementary Information for

"AIPd₁₅B₇: a new superconducting cage-compound with *anti*-Yb₃Rh₄Sn₁₃-type of

structure"

Qiang Zheng,^a Walter Schnelle,^a Yurii Prots,^a Matej Bobnar,^a Ulrich Burkhardt,^a Andreas Leithe-Jasper^a and Roman Gumeniuk,^{*a,b}

^a Max-Planck-Institut für Chemische Physik fester Stoffe, Nöthnitzer Str. 40, 01187 Dresden,

Germany

^b Institut für Experimentelle Physik, TU Bergakademie Freiberg, Leipziger Str. 23,

09596 Freiberg, Germany

* *E-mail address: roman.gumeniuk@physik.tu-freiberg.de*

Atoms		Distances	CN
Al	-6Pd2	2.730(1)	12
	-6Pd3	2.752(1)	
Pd1	-2B2	2.079(3)	14
	-2Pd3	2.774(1)	
	-2Pd2	2.782(1)	
	-2Pd2	2.857(1)	
	-2Pd2	2.976(1)	
	-2Pd3	3.012(1)	
	-2Pd3	3.214(1)	
Pd2	-1B3	2.139(6)	15
	-1B1	2.217(1)	
	-1B2	2.252(1)	
	-1Pd3	2.714(2)	
	-1Al	2.730(1)	
	-1Pd1	2.782(1)	
	-1Pd2	2.850(2)	
	-1Pd1	2.857(1)	
	-1Pd2	2.885(2)	
	-1Pd3	2.885(2)	
	-2Pd2	2.942(2)	
	-1Pd3	2.955(2)	
	-1Pd1	2.976(1)	
	-1Pd2	3.391(1)	
Pd3	-1B2	2.156(2)	14
	-1B3	2.157(5)	
	-1B3	2.28(2)	
	-1Pd2	2.714(2)	
	-1Al	2.752(1)	
	-1Pd1	2.774(2)	
	-2Pd3	2.789(2)	
	-1Pd2	2.885(1)	
	-2Pd3	2.921(2)	
	-1Pd2	2.955(2)	
	-1Pd1	3.012(1)	
	-1Pd1	3.214(1)	

Table S1. Interatomic distances (Å) in the AlPd $_{15}B_7$ structure

B1	-6Pd2	2.217(1)	6
B2	-2Pd1	2.079(3)	6
	-2Pd3	2.156(2)	
	-2Pd2	2.252(1)	
B3	-2Pd2	2.139(6)	6
	-2Pd3	2.157(5)	
	-2Pd3	2.28(2)	

Figure S1. X-ray diffraction pattern of powders of an as-cast AlPd₁₅B₇ sample without stress annealing, showing broadening of all reflections, due to the ductility of the sample.

Figure S2. Microstructure of an as-cast AlPd₁₅B₇ sample: (a) an image from optical microscope and (b) a BSE image in SEM, both revealing a very low amount of impurities in this sample; (c) EDXS mapping, where green and red contrasts belong to the AlPd₁₅B₇ phase and impurities, respectively.

The content of impurities is less than 1 vol.%

Figure S3. Crystal structure of $Yb_3Rh_4Sn_{13}$. [Sn@Sn₁₂] icosahedra – light gray; [Rh@Sn₆] trigonal prisms – dark gray; [\Box @Yb₂Sn₄] octahedra – blue.

Figure S4. Coordination polyhedra in AlPd₁₅B₇

Figure S5. (a) Temperature dependence of c_{el}/T with the fit to $c_{el} = \gamma_0 T + \gamma T_c A e^{\frac{-\Delta(0)}{k_B T}}$; (b) $\gamma(H) - \gamma_0$ as a function of magnetic field $\mu_0 H$. The solid line shows a linear dependence of $\gamma(H) - \gamma_0 vs \mu_0 H$, indicating a typical *s*-wave gap for AlPd₁₅B₇.