450 Electronic Supplementary Information

451

452 The degradation behaviour of nine diverse contaminants in

453 urban surface water and wastewater prior to water treatment

454 Guillaume Cormier,^a Benoit Barbeau,^b Hans Peter H. Arp^c and Sébastien Sauvé^{*a}

455
⁴ Department of Chemistry, Université de Montréal, C.P. 6128, Succursale Centre-Ville, Montréal, QC, Canada, H3C 3J7. Fax: +1-514-343-2468; Tel: +1-514-343-6749; E-mail:sebastien.sauve@umontreal.ca
^b NSERC Industrial Chair on Drinking Water, Department of Civil, Mining and Geological Engineering, Polytechnique Montréal, C.P. 6079, Succursale Centre-Ville, Montréal, QC, Canada H3C 3A7. Tel: +1-514-340-5918; E-mail:benoit.barbeau@polymtl.ca
^c Norwegian Geotechnical Institute (NGI), P.O. Box 3930 Ullevål Stadion, N-0806 Oslo, Norway

466 Contents

467	Electronic Supplementary Information	1
468	S1. The maintenance of oxic conditions	2
469	S2. Viability of the microbial composition of the raw wastewater systems in time	3
470	S3. Results of potential long term compound losses by adsorption on vessels	4
471	S4. Influence of biocides on the analytical variability	5
472	S5. Parameters of the analytical method	7
473	S6. Quality assurance and validation of the analytical method	9
474	S7. Degradation results	11
475	S8. Literature Review of Aquatic Degradation Data for the Studied Compounds	13
476	References	18
477		

478

479 S1. The maintenance of oxic conditions

480 Preliminary observations have showed that in conditions similar to the ones of the degradation 481 assays used here, bubbling air through each bottle 60 minutes per day would progressively 482 evaporate water, which would lead to an increase in concentration in the absence of degradation 483 or water-refilling. Our measured concentration of atrazine were increasing within time and the 484 concentration of E2 were stable while we were expecting it to decrease (through degradation). 485 This effect was not important on a short period but was noticeable for longer periods (few weeks). A correction factor has hence been used to correct the quantified concentrations of the 486 target compounds, to prevent them being biased to high due to water evaporation. We note that 487 488 volatilization is not an issue for the studied compounds, due to their low Henry's law constant 489 (Table 2 in the main text), which warrants their classification as being non-volatile from water. 490 The correction factor was used every time we were analyzing the target compounds in the 491 degradation assays and can be summarised as follows:

 492 493 494 495 496 497 	Where •	$[C]_r$ is the real co $[C]_m$ is the conce γ is the correction	[C] oncentration of the compound entration measured by the a n factor	$r = \gamma [C]_m$ nd in µg L ⁻¹ nalytical technique in µg L-1
498		•		
499 500 501			$m_{Tn} = M_{Tn} - v$	$\gamma = \underline{m_{Tn} + (0.5(n+1))}_{m_{To}}$
502 503 504 505 506 507	Where	• m_{Tn} • M_{Tn} • v • $(0.5(n+1))$	is the mass of the matrix in is the sum of the mass of t withdrawal of the aliquot a is the mass of the empty b is the correction on m_{Tn} for	In mg after the withdrawal of the aliquot at T_n the bottle and the matrix in mg after the tt T_n bottle in mg the taken aliquot of 0.5 mg (500 μ L) at every T_n

508

509 S2. Viability of the microbial composition of the raw wastewater 510 systems in time

511 The microbial lag phase is the period of time in which the bacterial population of a system 512 adapts itself to the biodegradable compound(s). During this period, no biodegradation is observed. The OECD standardised protocol (309 - simulation biodegradation test) that was 513 514 followed states that a system is not considered viable in terms of active bacterium if the lag phase exceeds 60 days and no biodegradation is observed until 90 days, in which case the 515 516 studied system has depleted and a renewal is necessary to continue the studies. The results of 517 the laboratory bench-scale experiment measuring the biological degradation of the target 518 compounds in raw wastewaters showed that the studied raw wastewaters were microbiologically viable during all the duration of the biodegradation experiment, the 519 520 biodegradation starting no later than the 71th day.

521 A measurement of the viable bacterium in the studied raw wastewaters at the 38th day also
522 supports this conclusion (Table S1).

523 Table S1. Bacterial count in the studied raw wastewaters initially and after 38 days of 524 incubation.

Darra	T ₀	T = 38 days of biodegradation experiment			
Kaw wastewater	viable bacteria (nb/L)	viable bacteria (nb/L)	total bacteria (nb/L)		
4 °C	2.09 x10 ¹⁰	2.99 x10 ⁹	1.01 x10 ¹⁰		
21.5 °C	2.09 x10 ¹⁰	6.94 x10 ⁹	1.13 x10 ¹⁰		

525

S3. Results of potential long term compound losses by adsorption on vessels

Figure S1. Compound losses by sorption on internal bottle surface after 14 days of incubation at 4 and 20 °C for an initial concentration of \approx 400 µg L⁻¹ in distilled water where ASG = amber silanized glass bottle, AGB = amber glass bottle & HDPE = HDPE bottles.

S4. Influence of biocides on the analytical variability

A comparison was made between a sample of raw wastewater and a sample of acidified (pH 4.5) wastewater spiked with 150 μ m of 150 μ M of CuSO4 and AgNO3 to investigate if the conditions of the sample with biocides influenced the variability of the analysis of the 9 target compounds.

Figure S2. Log_{10} peak area (a.u.) of the nine target compounds at 400 µg L⁻¹ ± SD (n=5) in raw wastewater and in acidified (with formic acid) wastewater spiked with 150 µM of CuSO4 and AgNO3.

The results (Figure S2) showed that the new conditions did not change the peak areas for ATZ, DEA, CBZ, E2, EE2 and CAF, these peak areas being not statistically different from raw to wastewater pH 4.5 with biocides. The acidification and the addition of biocides respectively tripled and doubled the peak areas of NOR and DCF, which should not affect the variability of their signal. The peak area decreased only for SMX, the signal passing from 10⁵ to 10⁴ when acidifying and adding biocides. The latter signal being quite low, this may influence the variability of the signal. The response ratio is defined by the ratio of the peak area of the target compound on the peak area of its internal standard. Since it is the parameter used to quantify the compounds, the influence of the acidification and the addition of biocides on it was also measured.

Figure S3. Response Ratio (RR) of the 9 target compounds at 400 μ g L⁻¹± SD (n=5) in raw wastewater and in acidified (with formic acid) wastewater spiked with 150 μ M of CuSO4 and AgNO3.

Results (**Figure S3**) showed that the response ratios of DEA, EE2, NOR and DCF are statistically different when acidifying and adding biocides, which means that a calibration curve per condition (one for samples of raw wastewater and one for wastewater pH 4.5 + biocides) had to be done before each quantification. Results also showed that the acidification and addition of biocides did not affected the quantification of SMX, the RRs being statistically identical. The standard deviations of the RRs of the acidified wastewater samples spiked with biocides were deemed acceptable.

S5. Parameters of the analytical method

Table S2 LDTE) parameters	for the	quantification	of 9	target	analytes	in	Positive	(+)
Ionization Mode	by LDTD-A	PCI-MS	/MS						

LDTD Method Caracteristics ^A						
Laser power at 980 nm & 20 W	0.30					
	2 sec at 0%					
Laser pattern	1 sec from 0 to 30%					
	0.01 sec from 30% to 0%					
Capillary temperature	50 °C					
Carrier gas flow	3.0 L min ⁻¹					
Ion sweep gas	0.3 a.u.					
Sheath gas	0					
Auxiliary gas	0					
Skimmer offset	0					
Vaporizer temperature	0					

^AAll the methods have the same characteristics: there are 4 because the LDTD system cannot take more than 8 transitions (4 compounds) at the same time

Table S3 LDTD methods and internal standards associated for the quantification of targetcompounds by LDTD-APCI-MS/MS

LDTD Method ^A (#)	Compound	Internal Standard
1	ATZ	[13C] AT7
1	DEA	
	E2	
2	EE2	$[^{13}C_6]-E2$
	NOR	
2	CBZ	$CBZ-d_{10}$
3	CAF	[¹³ C ₃]-CAF
1	SMX	[¹³ C ₆]-SMX
4	DCF	DCF-d ₄

^AAll the methods have the same characteristics: there are 4 because the LDTD system cannot handle more than 8 transitions (4 compounds) simultaneously (i.e. one injection peak lasts only for a few seconds at most).

 Table S4 MS/MS parameters for the quantification of 9 target analytes in positive (+)
 ionization mode by LDTD-APCI-MS/MS

Compound	Ionisation mode	Precursor Ion [M+H] ⁺ (m/z)	Product Ion (m/z)	TL (V)	CE (eV)
ATZ	(+)	216.12	131.9 173.9	70	23
DEA	(+)	188.1	103.9 145.9	60	27
E2	(+)	255.18	133.1 159.1	70	18
EE2	(+)	279.1	133.1 159.1	55	18
NOR	(+)	299.205	109.1 91.1	89	39
CBZ	(+)	237.12	192.1 194.1	65	24
CAF	(+)	195.12	109.9 137.9	69	21
SMX	(+)	254.06	107.9 156.1	55	24
DCF	(+)	296.01	215.0 249.9	63	12
[¹³ C ₃]-AT	(+)	219.11	106.0 177.0	71	30
[¹³ C ₆]-E2	(+)	261.18	133.1 159.0	73	20
CBZ-d ₁₀	(+)	247.17	202.1 204.1	72	36
[¹³ C ₃]-CAF	(+)	198.111	112.1 140.1	72	24
[¹³ C ₆]- SMX	(+)	260.081	114.1 162.0	61	22
DCF-d ₄	(+)	300.26	219.1 254.1	69	21

S6. Quality assurance and validation of the analytical method

		Replicability			Recovery	
Compound	Amount found [μg L ⁻¹]	SD (µg L ⁻¹)	RSD (%)	Amount found [µg L ⁻¹]	% Bias vs amount spiked	% vs amount spiked
ATZ	198	7,6	3,8	198	-0.8	99.2
DEA	164	11,2	6,8	168	-15.9	84.1
E2	205	15,7	7,7	164	-18.1	81.9
EE2	201	20,5	10,2	208	4.0	104
NOR	193	26,9	14,0	167	-16.5	83.5
CBZ	210	18,7	8,9	172	-14.2	85.8
CAF	192	30,5	15,8	228	14.0	114
SMX	173	28,3	16,3	251	25.3	125
DCF	193	39,8	20,7	206	3.2	103

Table S5 Replicability and recovery for the wastewaters tested for an added concentration of 200 μ g L⁻¹ (n = 5)*

*Test were carried out separately with 2 different samples.

The replicability of the method describes the agreement of a set of results among themselves when the analyst, the instrument and the day of analysis is the same. It was tested in the dirtiest studied water, i.e. the raw wastewater (PST effluent). There are many ways to calculate the replicability. The relative standard deviation (RSD) was considered for the present study (n=5). The acceptance threshold was fixed at 15% of RSD.

The results suggested that 3 (CAF, SMX and DCF) of the 9 studied compounds did not respect the acceptance threshold of \leq 15%. Nonetheless, the respective values of 15.8, 16.3 and 20.7 for CAF, SMX and DCF were deemed satisfactory since like in any analysis, it is possible to exclude outliers. The goal of this test was to show that the method was replicable and not to develop a robust analytical method. Precise exclusion procedures were created for series of data which values were exceeding the acceptance threshold. These exclusion procedures were applied during all the degradation tests, without exception. An observation was deemed an outlier if it failed the Q test. Furthermore, when the RSD was > 15% within a series of data, the value increasing the most the RSD was excluded, with a maximum of 1 data that can be excluded. Unlike all the other studied compounds which were quantified with 3 wells per sample, SMX and DCF were quantified with 5 wells to mitigate the lower replicability of their analysis.

	LOD [µg L ⁻¹]	LOQ [µg L ⁻¹]	LOD [µg L ⁻¹]	LOQ [µg L ⁻¹]	LOD [µg L ⁻¹]	LOQ [µg L ⁻¹]
Compound	dd-water		0.45 μm surface river water		(raw wastewater)	
ATZ	3.7	12.2	3.7	12.2	4.0	13.2
DEA	1.0	3.3	1.0	3.3	3.0	9.9
E2	0.7	2.3	0.7	2.3	5.0	16.5
EE2	0.3	1.1	0.7	2.3	2.5	8.3
NOR	0.3	0.9	0.3	0.9	3.0	9.9
CAF	1.9	6.3	3.1	10.2	10.0	33.0
CBZ	0.2	0.5	0.2	0.5	0.4	1.3
SMX	1.0	3.3	2.2	7.3	6.7	22.1
DCF	2.5	8.3	1.3	4.3	7.2	23.8

Table S6 Method limits of detection (LOD) and limits of quantification (LOQ) for the 9 target analytes in the aqueous systems tested

S7. Degradation results

Table S7 Exhaustive degradation results: Lag phases (Lp), pseudo first order disappearance rate constants (k) & half-lives $(t_{1/2}) \pm$ standard deviation of duplicate incubations for the nine target compound in all conditions studied.

	Water type tested	0.45 μm (s	filtered urban river urface water)		Raw wastew	vater (PST outlet)	
Compound							
	Characteristics of the incubation	4°C	21°C	4°C with biocides	4°C	21.5°C with biocides	21.5°C
ATZ	-	а	а	d	d	d	d
DEA	-	а	а	d	d	d	d
	Lp [days]		$5 \le Lp < 14$		$2 \le Lp \le 8$	$2 \le Lp < 43$	non significant
E2	<i>k</i> [days ⁻¹]	d	0.128 ± 0.003	d	0.018 ± 0.004	f	0.52 ± 0.01
	t _{1/2} [days]		5.4 ± 0.1		40 ± 9	J	1.30 ± 0.03
	Lp [days]						$26 \le Lp < 66$
EE2	<i>k</i> [days ⁻¹]	а	а	d	d	d	0.036 ± 0.003
	t _{1/2} [days]						19 ± 2
	Lp [days]				$8.5 \leq Lp < 21.5$		$0 \le Lp < 8.5$
NOR	<i>k</i> [days ⁻¹]	b	b	е	0.022 ± 0.002	е	0.11 ± 0.00
	t _{1/2} [days]				32 ± 4		6 ± 0
CBZ	-	а	а	е	е	е	е
	Lp [days]				$0 \le Lp < 8.5$		$0 \le Lp < 8.5$
CAF	<i>k</i> [days ⁻¹]	а	а	С	0.011 ± 0.003	С	0.037 ± 0.004
	t _{1/2} [days]				65 ± 20		19 ± 2
	Lp [days]				$21.5 \leq Lp < 71$		$0 \le Lp < 8.5$
SMX	<i>k</i> [days ⁻¹]	а	а	С	0.0082 ± 0.0008	С	0.035 ± 0.003
	t _{1/2} [days]				85 ± 8		20 ± 2
DCF	-	а	а	e	е	е	е

No significant disappearance observed after ^{*a*}365, ^{*b*}156, ^{*c*}130, ^{*d*}72 or ^{*e*}66 days (experiment length). ^{*f*} data excluded due to poor reproductibility.

Figure S4. Residual Diclofenac (%) over time (days) in a raw wastewater (PST outlet) with an initial spiked concentration of 400 µg L⁻¹. Error bars represent relative standard deviation of duplicates measurements.

S8. Literature Review of Aquatic Degradation Data for the Studied Compounds

Table S8 Reported values of degradation for the 9 studied compounds in different water systems^a

Compound (ref)	Studied system		System characteristics	t _{1/2} (days)	Degradation % in (time)	Implied process
ATZ ²			dextrose as Cexternal source		40 (5d)	В
ATZ^2	Anaerobic mixed growth medium		ø C _{external} source	n.a.	61.8 (34d)	В
ATZ^2			ø C & N _{external} source		42 (150d)	В
ATZ ²	Aerobic Agrobac growth mediu bact	<i>eterium radiobacter</i> m (common soil erium)	n.a.	n.a.	94 (72h)	В
ATZ ³		water		20		В, Н, О
ATZ ³	sediments	water:sediment (extractible)	0.8% C _{org}	80	na	В, Н, О
ATZ ³	A	eau		14	11. <i>a</i> .	В, Н, О
ATZ ³	sediments	water:sediment (extractible)	5% C _{org}	35		В, Н, О
ATZ ³	Aerobic water downstream of a sugar refinery	500 ml water : 12.5	10 ppm sugar at 22°C	n.a.	100 (6w)	В
ATZ ³	Aerobic distilled water	g seaments	at 22°C		100 (18w)	В
ATZ ³	Anaerobic pond water	50 ml water : 25 g sediments	n.a.	608	n.a.	G
ATZ ³	Saltwater	n.a.	n.a.	15-20	n.a.	G
ATZ ³			ph 5	1000		Н
ATZ ³			ph 7	none	n.a.	Н
ATZ ³	Sterile bu	ffered water	ph 9	6600		Н
ATZ ³			ø photo-sensitizer	≈335	n.a.	Р
ATZ ³			with photo-sensitizer	<<< 335	n.a.	Р
ATZ^4			ATZ 1500 ppb, ph 5, 25°C	69.6	n.a.	Н
ATZ^4	EU Method C.7 (I	Degradation: Abiotic	ATZ 1500 ppb, ph 5, 60°C	6.6	n.a.	Н
ATZ^4	Degradation. IT a	is a runction of ph)	ATZ 1500 ppb, ph 5, 70°C	3.7	n.a.	Н
ATZ ⁵	Synthetic river wat	er, ph 6.4 (aerobic)	ATZ 500 mph reporter operated in	none	n.a.	В
ATZ ⁵	Synthetic river wat (anaerobic)	er , ph 6.4	continuous mode	none	n.a.	В

ATZ ⁶			0.02M phosphate buffer (sterile)	17.570/(1)	. the opposite of deall-dated	С
ATZ ⁶		Z () () ()	soil	metabolites	s generally did not exceed	В
ATZ ⁶	bacterial populations from		vietia enriched (ph 7.2) with mixed those of sterile solution bacterial populations from water indicate that atrazine is a		atrazine is not degraded by	В
ATZ ⁶			activated sludge	bacteria but	bound, thus simulating B.	В
ATZ^7	Estuarina watar	water	archia natural light	3-12		Р
ATZ^7	Estuarme water	sediments	aerobic, natural light	15-20	II.a.	Р
ATZ ⁸	Aqueous systems	waters in general	n.a.	>>365	n.a.	Р
ATZ ⁹	Aqueous	s system	ph 7.0, natural light	335	n.a.	Р
ATZ ⁹	Autoclaved estuarin	e and marine water	n.a.	n.a.	persistent (128d)	С
ATZ ⁹	River	water	n.a.	n.a.	17% (128d)	G
ATZ ⁹		River estuary surrou	nded by an agricultural watershed (corn)	30	n.a.	G
ATZ ⁹	Field or		Estuarine conditions	30	n.a.	G
ATZ ⁹	ATZ ⁹ microcosm evaluations	Estuarine microcos	sm (river surrounded by an agricultural watershed (corn)	90-120	n.a.	G
ATZ ⁹		Estuarine microcos	sm (river surrounded by an agricultural watershed (corn)	90-120	n.a.	G
ATZ ⁹			25 °C, ph 4	244	n.a.	Н
ATZ ⁹			25 °C, ph 4, 2% humic acid	1.73	n.a.	Н
ATZ ⁹			ph 2.9, 5 mg/L fulvic acid	34.8	n.a.	Н
ATZ ⁹	⁹ Laboratory aq	ueous Systems	ph 4.5, 5 mg/L fulvic acid	174	n.a.	Н
ATZ ⁹			ph 6.0, 5 mg/L fulvic acid	398	n.a.	Н
ATZ ⁹			ph 7.0, 5 mg/L fulvic acid	742	n.a.	Н
ATZ ⁹			ph 5.0-7.0	n.a.	persistent (30d)	Н
DEA ¹⁰	Potable water	n.a.	n.a.	n.a.	persistent (10d)	G
DEA ¹¹	Groundwater micro condi	cosm under low O ₂	DEA~20 µg/L, DO <3.0 mg/L	n.a.	persistent (45d)	G
DEA ¹²	Aerobic	aquifer	DEA~3 µg/L, DO~6.9 mg/L	n.a.	persistent (60d)	G
E2 ¹³	Aerobic digestion unit	mud		n.a.	88 (24h)	В

E2 ¹³	Anaerobic digestion unit	mud		7	n.a.	В	
E2 ¹³	Bioreactor	n.a.		n.a.	92 (7h) & 100 (49h)	В	
E2 ¹⁴	Aerobic river water		20.00	n.a.	100 (1.2d)	В	
EE2 ¹⁴			20 °C		17 (1.2d)	В	
E2 ¹⁵				1		В	
	Aerobic marine water		20 °C	lag phase			
EE2 ¹⁵						В	
E2 ¹⁵	Anaerobic marine water			none	n.a.	В	
EE2 ¹⁵						В	
E2 ¹⁴			pH 7.1-8.4, DOC 2.9-10.3 mg/L, TSS 5.2-	0.2-9	n.a.	В	
EE2 ¹⁴	Aerobic industrial, urban and rural waters		83 mg/L, bacterium 3x10 ⁶ -3.5x10 ⁸ cfu/L,	mo	ore persistent than E2	В	
E2/EE214			20 °C	5	n.a.	Р	
E2/EE214			sterile	none	persistent (16d)	H + O	
E2 ¹⁶	English river waters		Water column, initially aerobic but	2-3	n.a.	В	
EE2 ¹⁶			°C	4-6		В	
E2/EE2 ¹⁶			sterile	none	persistent	H + O	
E2 ¹⁷	Potable water		n.a.	n.a.	38.9 (10d)	G	
EE2 ¹⁷					22.4 (10d)	G	
E2 ¹⁸			15 °C (winter)	n.a.	100 (7d)	В	
E2 ¹⁸			28 °C (summer)	n.a.	100 (5d)	В	
EE2 ¹⁸	Japanese river waters		15 °C (winter)	>>14	n.a.	В	
EE2 ¹⁸			28 °C (summer)	14	n.a.	В	
E2/EE218			sterile	none	persistent (5d)	H + O	
CBZ ¹⁹	Aquatic microcosm of 12,000 L held outside		unspecified T(°C) and O ₂ – communities of fish, aquatic plant, zoo-, phytoplankton, macrophyte & bacterium	n.a.	not significant	Н	
CBZ ¹⁹				n.a.	not significant	В	
CBZ ¹⁹				82	n.a.	Р	
CBZ ²⁰	Stream muddy	water	pH 8,5, TOC 4,7 mg/L	47		В	
CBZ ²⁰	water (oxic, darkness, 20°C)	3 water : 1 sediment	pH 7,7, 1.4% C _{org} ,	328	n.a.	В	
CBZ ²¹	Double-distilled water		naturally irradiated in spring, 40°N, pH 5,5 at 25 °C	5.1	n.a.	Р	

CBZ ²²	Double-distilled water	naturally irradiated in winter, 40°N, pH 5,5 at 25 °C	100	n.a.	Р	
CBZ ²³	11 australian wastewaters (primary settling tanks, activated sludge, anaerobic digestion)	bacterial beds aged between 1 and 40 days, oxic and anoxic conditions	n.a.	not significant during treatment	В	
CBZ ²⁴		pH 5 at 25°C	> 365		Н	
CBZ ²⁴	Aqueous systems (Estimation Program	pH 7 at 25°C	> 365	n.a.	Н	
CBZ ²⁴	interface)	pH 9 at 25°C	> 365		Н	
CAF ¹⁹			n.a.	not significant	Н	
CAF ¹⁹	Aquatic microcosm of 12,000 L held outside	unspecified $T(^{\circ}C)$ and O_2 – communities of fish, aquatic plant, zoo-, phytoplankton, macrophyte & bacterium	n.a.	not significant	В	
CAF ¹⁹		macrophyte & bacterium	1-2	n.a.	Р	
CAF ²⁵		sterile (darkness) at 20°C	nulle	persistent	H + O	
CAF ²⁵	I also success	sterile at 20°C	12.8	n.a.	Р	
CAF ²⁵	Lake water	natural (darkness) at 20°C	>120	n.a.	В	
CAF ²⁵		natural at 20°C	12	n.a.	P + B	
CAF ²⁶	WWTP primary inlet	BOD 67 mg/L, TSS 76 mg/L, pH 7, 19 °C	~1	≈100 (3d)	В	
CAF ²⁶	WWTP outlet	BOD 3.6 mg/L, TSS 7.9 mg/L, pH 6.4, 19 °C	~5	≈100 (10d)	В	
CAF ²⁷ CAF ²⁷	Sediments upstream of 3 WWTP	oxic, 23 °C anoxic, 23 °C	n.a.	20-90 (2d) 85-98 (32d)	B B	
CAF ²⁷	Waters upstream of 2 WWTP		none	not significant	В	
CAF ²⁷	Water upstream of a WWTP	oxic, 23 °C	n.a.	100 (46d)	В	
CAF ²⁴		pH 5 at 25°C	30-500		Н	
CAF ²⁴	Aqueous systems (Estimation Program Interface)	pH 7 at 25°C	30-500	n.a.	Н	
CAF ²⁴		pH 9 at 25°C	1-70		Н	
SMX ¹⁹		unspecified $T(^{\circ}C)$ and O_{2} - communities of	n.a.	not significant	Н	
SMX ¹⁹	Aquatic microcosm of 12,000 L held	fish, aquatic plant, zoo-, phytoplankton,	n.a.	not significant	В	
SMX ¹⁹	ouiside	macrophyte & bacterium	19	n.a.	Р	

SMX ²⁶	WWTP primary inlet		BOD 67 mg/L, TSS 76 mg/L, pH 7, 19 °C	~18.	90 (25d)	В
SMX ²⁶	WWTP outlet		BOD 3.6 mg/L, TSS 7.9 mg/L, pH 6.4, 19 °C	none	persistent (56d)	В
SMX ²⁸	Countly ation anatoms	3 water : 1	unspecified O ₂ , 25 °C	14		В
SMX ²⁸	Synthetic system	sediment	sterile, 25 °C	115	п.а.	В
SNX ²⁹			sterile (darkness)	none	persistent	Н
SMX ²⁹	Natural waters (initial O ₂ of 7.8 mg/L, no air bubbling and no bottle headspace)		sterile	48.9		Р
SMX ²⁹			natural (darkness)	47.4	n.a.	В
SMX ²⁹			natural	7.3		$\mathbf{B} + \mathbf{P}$
SMX ²⁹	Sediment slurry (4.7% C _{org})		sterile (darkness)	none	persistent	Н
SMX ²⁹			sterile	47.3		Р
SMX ²⁹			natural (darkness)	10.1	n.a.	В
SMX ²⁹			natural	4.9		$\mathbf{B} + \mathbf{P}$
SMX ²²	Double-distilled water		natural irradiation in winter, 50°N, pH 5,5	2.4	n.a.	Р
DCF ²²	Double-distilled water		natural irradiation in winter, 50°N, pH 5,5	5	n.a.	Р
DCF ³⁰	Liquid phases of WWTP sludges (0.5 g TSS/L)		sterile	n.a.	persistent	Н
DCF ³⁰			aerobic, pH 5.5-7.3, 20°C	n.a.	persistent	В
DCF ³¹	Aerobic synthetic wastewater		(10 mg activated sludge/L deionized water)	none	persistent (28d)	В
DCF ³²			n.a.	n.a.	90 (1h)	Р
DCF ³²	² Lake surface waters		darkness	none	persistent (37d)	H + B

^{*a*} Classification symbols are h = hours, d = days, w = weeks, B = biodegradation, H = hydrolysis, O = oxidation, G = general degradation, P = photolysis and C = chemical degradation

References

- 1. S. Simkins and M. Alexander, *Applied and Environmental Microbiology*, 1984, **47**, 1299-1306.
- 2. P. K. Ghosh and L. Philip, *Global NEST Journal*, 2006, **8**, 159-178.
- 3. S. Canard, *Devenir de l'atrazine dans l'environnement: Étude bibliographique*, ENVT: Toulouse, 2003.
- 4. European Chemicals Agency (ECHA), Atrazine http://apps.echa.europa.eu/registered/data/dossiers/DISS-a64ee5e9-8e4d-2576-e044-00144f67d249/AGGR-3213ca90-30b9-4691-bf54fffef5167e45_DISS-a64ee5e9-8e4d-2576-e044-00144f67d249.html#AGGR-3213ca90-30b9-4691-bf54-fffef5167e45, (accessed July 15, 2015).
- 5. D. Dries, B. De Corte, J. Liessens, W. Steurbaut, W. Dejonckhere and W. Verstraete, *Biotechnology letters*, 1987, **9**, 811-816.
- 6. A. Geller, *Archives of environmental contamination and toxicology*, 1980, **9**, 289-305.
- 7. T. W. Jones, W. M. Kemp, J. C. Stevenson and J. C. Means, *Journal of Environmental Quality*, 1982, **11**, 632-638.
- 8. National Registration Authority for Agricultural and Veterinary Chemicals, *The NRA Review of Atrazine: Review Summary*, NRA: Canberra, 1997.
- 9. K. R. Solomon, D. B. Baker, R. P. Richards, K. R. Dixon, S. J. Klaine, T. W. La Point, R. J. Kendall, C. P. Weisskopf, J. M. Giddings, J. P. Giesy, L. W. Hall and W. M. Williams, *Environmental Toxicology and Chemistry*, 1996, **15**, 31-76.
- 10. K. Aboulfadl, C. De Potter, M. Prévost and S. Sauvé, *Chemistry Central Journal*, 2010, **4**, 1-8.
- 11. S. K. Papiernik and R. F. Spalding, *Journal of agricultural and food chemistry*, 1998, **46**, 749-754.
- 12. S. K. Widmer and R. F. Spalding, *Journal of Environmental Quality*, 1995, **24**, 445-453.
- 13. H. B. Lee and D. Liu, Water, Air, & Soil Pollution, 2002, 134, 351-366.
- 14. M. D. Jürgens, K. I. E. Holthaus, A. C. Johnson, J. J. L. Smith, M. Hetheridge and R. J. Williams, *Environmental Toxicology and Chemistry*, 2002, **21**, 480-488.
- 15. G.-G. Ying and R. S. Kookana, *Environmental Science & Technology*, 2003, **37**, 1256-1260.
- 16. R. J. Williams, M. D. Jürgens and A. C. Johnson, *Water Research*, 1999, **33**, 1663-1671.
- 17. M. D. Jürgens, Williams, R. J. and Johnson, A. C, *Fate and behaviour potential of steroid estrogens in rivers: a scoping study*, Institute of Hydrology, 1999.
- 18. S. Matsuoka, M. Kikuchi, S. Kimura, Y. Kurokawa and S. i. Kawai, *Journal of Health Science*, 2005, **51**, 178-184.
- 19. M. W. Lam, C. J. Young, R. A. Brain, D. J. Johnson, M. A. Hanson, C. J. Wilson, S. M. Richards, K. R. Solomon and S. A. Mabury, *Environmental Toxicology and Chemistry*, 2004, **23**, 1431-1440.
- 20. D. Löffler, J. Römbke, M. Meller and T. A. Ternes, *Environmental Science & Technology*, 2005, **39**, 5209-5218.
- 21. R. Andreozzi, R. Marotta, G. Pinto and A. Pollio, *Water Research*, 2002, **36**, 2869-2877.

- 22. R. Andreozzi, M. Raffaele and P. Nicklas, *Chemosphere*, 2003, **50**, 1319-1330.
- 23. M. Clara, B. Strenn and N. Kreuzinger, *Water Research*, 2004, **38**, 947-954.
- 24. United States Environmental Protection Agency, *Estimation Programs Interface Suite™ for Microsoft® Windows, v 4.11*, United States Environmental Protection Agency, Washington, DC, USA., 2015.
- 25. I. J. Buerge, T. Poiger, M. D. Müller and H.-R. Buser, *Environmental Science & Technology*, 2003, **37**, 691-700.
- 26. S. Pérez, P. Eichhorn and D. S. Aga, *Environmental Toxicology and Chemistry*, 2005, **24**, 1361-1367.
- 27. P. M. Bradley, L. B. Barber, D. W. Kolpin, P. B. McMahon and F. H. Chapelle, *Environmental Toxicology and Chemistry*, 2007, **26**, 1116-1121.
- 28. B. Xu, D. Mao, Y. Luo and L. Xu, *Bioresource Technology*, 2011, **102**, 7069-7076.
- 29. H.-T. Lai and J.-H. Hou, Aquaculture, 2008, 283, 50-55.
- 30. K. Kimura, H. Hara and Y. Watanabe, *Environmental science & technology*, 2007, **41**, 3708-3714.
- 31. J. B. Quintana, S. Weiss and T. Reemtsma, *Water Research*, 2005, **39**, 2654-2664.
- 32. H.-R. Buser, T. Poiger and M. D. Müller, *Environmental science & technology*, 1998, **32**, 3449-3456.