Electronic Supplementary Information

for

Deep Eutectic Solvents as Attractive Media for CO₂ Capture

Tushar J. Trivedi, Ji Hoon Lee, Hyeon Jeong Lee, You Kyeong Jeong, and Jang Wook Choi*

Graduate School of Energy, Environmental Water and Sustainability (EEWS) and Saudi

Aramco-KAIST CO₂ Management Center, Korea Advanced Institute of Science and Technology

(KAIST), 291 Daehak-ro, Yuseong-gu, Daejeon 305-701, Republic of Korea

Spectroscopic characterization of deep eutectic solvents (DESs)

Pure [MEA.Cl][EDA]

¹H NMR (400 MHz, D₂O, 25 °C): $\delta_{\rm H}$ (ppm) 5.2 (*s*, -OH, broad), 3.45 (*t*, -HO-CH₂), 2.60 (*t*, -CH₂-NH₃⁺), 2.57 (*s*, sharp -CH₂ of EDA); ¹³C NMR (400 MHz, D₂O, 25 °C): $\delta_{\rm C}$ (ppm): 60.98, 41.87, and 40.85; FTIR: (neat) $v_{\rm max}$ = 839, 948, 1073, 1318, 1460, 1513, 1600, 2139, 2868, 2900, 3338 cm⁻¹; ESI MS: (ESI⁺) m/z-61.11 [MEAH]⁺, (ESI⁻) m/z-255.26 [Cl(EDA)₃]⁻

[MEA.Cl][EDA] after CO₂ absorption:

¹H NMR (400 MHz, D₂O, 25 °C): $\delta_{\rm H}$ (ppm) 6.51 (*s*, -NH), 5.26 (*s*, -OH, broad), 3.55 (*t*, -HO-CH₂), 3.06 (*t*, -CH₂-NHCOO), 2.846 (*m*, -CH₂-NH₃⁺ and -CH₂-NH), 2.74 (*s*, sharp -CH₂ of EDA and -NH₂/-NH), ¹³C NMR (400 MHz, D₂O, 25 °C): $\delta_{\rm C}$ (ppm) 164.37, 58.20, 41.25, 40.194 and 38.95; FTIR: (neat) $v_{\rm max}$ = 851, 1015, 1098, 1190, 1320, 1487, 1513, 1600, 2134, 3056, 3342 cm⁻¹; ESI MS: (ESI⁺) m/z-61.11 [MEAH]⁺, (ESI⁻) m/z-283.26 [Cl(EDA)₃CO₂]⁻

Pure [TEA.Cl][EDA]

¹H NMR (400 MHz, D₂O, 25 °C): $\delta_{\rm H}$ (ppm) 3.69 (*t*, -HO-CH₂-), 2.64 (*t*, -(CH₂)₃-NH⁺), 2.55 (*s*, sharp -CH₂ of EDA); ¹³C NMR (400 MHz, D₂O, 25 °C): $\delta_{\rm C}$ (ppm): 61.31, 58.21, 44.35; ESI MS: (ESI⁺) m/z-150.20 [TEAH]⁺, (ESI⁻) m/z-255.23 [Cl(EDA)₃]⁻

[TEA.Cl][EDA] after CO₂ absorption

¹H NMR (400 MHz, D₂O, 25 °C): $\delta_{\rm H}$ (ppm) 3.484 (*t*, -HO-CH₂), 3.071 (*t*, -(CH₂)₃-NH⁺), 2.819 (*t*, -NH₂-CH₂), 2.747 (*s*, sharp -CH₂ of EDA and -NH₂/-NH), 2.57 (*t*, -CH₂-NHCOO); ¹³C NMR (400 MHz, D₂O, 25 °C): $\delta_{\rm C}$ (ppm) 166.97, 60.97, 58.04, 42.77, 42.28, 41.55; ESI MS: (ESI⁺) m/z-150.12 [TEAH]⁺, (ESI⁻) m/z-283.26 [Cl(EDA)₃CO₂]⁻

Pure [UE.Cl][EDA]

¹H NMR (400 MHz, D₂O, 25 °C): $\delta_{\rm H}$ (ppm) 2.68 (*s*, sharp -CH₂ of EDA); ¹³C NMR (400 MHz, D₂O, 25 °C): $\delta_{\rm C}$ (ppm): 162.48, 42.67; ESI MS: (ESI⁺) m/z-61.09 [UEH]⁺, (ESI⁻) m/z-255.23 [Cl(EDA)₃]⁻

[UE.Cl][EDA] after CO₂ absorption

¹H NMR (400 MHz, D₂O, 25 °C): $\delta_{\rm H}$ (ppm) 3.027 (*t*, -CH₂-NHCOO), 2.68 (*m*, -CH₂-NH₂ and sharp -CH₂ of EDA); ¹³C NMR (400 MHz, D₂O, 25 °C): $\delta_{\rm C}$ (ppm) 164.46, 161.45, 40.37, 40.24, 40.04; ESI MS: (ESI⁺) m/z-61.11 [UEH]⁺, (ESI⁻) m/z-283.26 [Cl(EDA)₃CO₂]⁻

Pure [TAE.Cl][EDA]

¹H NMR (400 MHz, D₂O, 25 °C): $\delta_{\rm H}$ (ppm) 2.712 (*s*, sharp -CH₂ of EDA), 0.92 (*s*, -CH₃); ¹³C NMR (400 MHz, D₂O, 25 °C): $\delta_{\rm C}$ (ppm): 70.88, 41.02, 18.45; ESI MS: (ESI⁺) m/z-76.18 [TAEH]⁺, (ESI⁻) m/z-255.23 [Cl(EDA)₃]⁻

[TAE.Cl][EDA] after CO₂ absorption:

¹H NMR (400 MHz, D₂O, 25 °C): $\delta_{\rm H}$ (ppm) 3.09 (*t*, -CH₂NHCOO), 2.78 (*t*, -CH₂-NH₂), 2.72 (*s*, sharp -CH₂ of EDA and -NH₂/-NH), 1.02 (*s*, -CH₃); ¹³C NMR (400 MHz, D₂O, 25 °C): $\delta_{\rm C}$ (ppm) 164.36, 109.88, 40.21, 39.76, 39.13; ESI MS: (ESI⁺) m/z-76.20 [TAEH]⁺, (ESI⁻) m/z-283.26 [Cl(EDA)₃CO₂]⁻

Heat of Absorption Calculation:

The heat of absorption was calculated based on Van't Hoff equation. For this, equilibrium constants were attained from CO_2 uptakes at series of temperatures.^{1, 2} For the general reaction scheme below,

$$2 \text{ DES} + \text{CO}_2 \leftrightarrow 2\text{DES} \cdot \text{CO}_2$$

Equilibrium constant can be defined as follows:

$$K = \frac{[2DES.CO_2]}{[DES]^2 P_{CO2}}$$

As all our experiments were carried out at atmospheric pressure, we assume $P_{CO2} = 1$. *K* value at each temperature was then obtained by [DES] and [2DES-CO₂]. The *K* value can be incorporated

with Van't Hoff equation below, from which ΔH can be retrieved from the linear fitting over ln (*K*) vs. 1/T plot.

$$\Delta G = \Delta H - T\Delta S$$
$$-RT \ln(K) = \Delta H - T\Delta S$$
$$\ln(K) = -\frac{\Delta H}{RT} + \frac{\Delta S}{R}$$
$$\ln(K) = -\frac{\Delta H}{R} (\frac{1}{T}) + C$$

Corrosion Test:

To measure the corrosiveness of the synthesized DESs and also compare it with that of conventional amine based scrubbing solvents (MEA and EDA), so-called the weight loss technique was employed. In this experiment, a stainless steel piece (\sim 1.75 x 1.15 cm²) was immersed in a vial (5 mL) containing each of highly concentrated (75 wt%) solvent loaded with 20 wt% CO₂ at 90 °C for 10 days. To maintain the constant temperature, an oil bath was used. Before and after the immersion, the weight of each piece was measured. Based on the weight difference, the corrosion penetration rate (CPR) in millimeter per year (mm/y) was calculated using the following formula.³

Corrosion penetration rate (CPR)
$$= \frac{KW}{\rho At}$$

where K = rate constant (8.76 x10⁴), W = weight loss in g, ρ = density of stainless steel in g/cm³, t = time of exposure in hours, A = exposed specimen area (cm²).

Corrosion process

Corrosion is a coupled redox process at an interface of steel surface and corrosive solution (MEA, EDA, and DESs in the current study). The oxidation occurs at the anode via iron dissolution, while the reduction takes place in the solution. The corrosion rate tends to increase with increasing CO_2 loading in the presence of moisture due to the process below producing carbonic acid (H₂CO₃) and bicarbonate (HCO₃⁻) which can be redox coupled with iron:^{3, 4}

Absorption of CO₂:

 $2R-NH_{2} + CO_{2} \rightarrow R-NH_{3}^{+} + RNHCOO^{-}$ $R-NH_{2} + CO_{2} + H_{2}O \rightarrow R-NH_{3}^{+} + HCO_{3}^{-}$ $2H_{2}O + CO_{2} \rightarrow H_{3}O^{+} + HCO_{3}^{-}$ $2H_{2}O + HCO_{3}^{-} \rightarrow H_{3}O^{+} + CO_{3}^{2-}$

At the steel surface (oxidation):

$$Fe \rightarrow Fe^{2+} + 2e^{-}$$

In the solution (reduction):

$$2H_{3}O^{+} + 2e^{-} \rightarrow 2H_{2}O + H_{2}$$
$$2HCO_{3}^{-} + 2e^{-} \rightarrow 2CO_{3}^{2-} + H_{2}$$
$$2H_{2}O + 2e^{-} \rightarrow 2OH^{-} + H_{2}$$
$$O_{2} + 2H_{2}O + 4e^{-} \rightarrow 4OH^{-}$$

Formation of corrosion products:

Ferrous hydroxide: $Fe^{2+} + 2OH^- \rightarrow Fe(OH)_2$

Ferrous carbonate: $Fe^{2+} + CO_3^{2-} \rightarrow FeCO_3$

Fig. S1 ¹³C NMR analyses of various DESs with a molar composition of HBA: HBD=1:3 before (black) and after (red) CO_2 absorption.

Fig. S2 DSC spectra of (a) Hydrochloride salts; and prepared DESs, (b) [MEA.Cl][EDA] with different molar ratios, and (c) other DESs with HBA:HBD=1:3.

Fig. S3 Time dependent CO₂ absorption capacities of prepared deep eutectic solvents (DESs) at 30°C and atmospheric pressure.

Fig. S4 Comparative CO₂ uptake capacity of [MEA.Cl][EDA]=1:3 with pure CO₂ gas and mixture flue gas (15 wt% CO₂+85 wt% N₂) at 30 °C and atmospheric pressure for 3 h.

Fig. S5 CO₂ absorption capacities of pure EDA at 30 °C and atmospheric pressure.

Fig. S6 Time-dependent CO₂ uptakes of synthesized DESs at different temperatures:

■=30 °C, **●**=50 °C, **▲**=70 °C, **▼**=90 °C.

Fig. S7 Van't Hoff plots (ln (*K*) vs. 1/T) for CO₂ absorption reaction. (a) [MEA.Cl][EDA] with different molar compositions. (b) Various DESs with different HBAs with a fixed molar composition of HBA:HBD=1:3.

Fig. S8 TGA profiles for [MEA.Cl][EDA]=1:3 for the bare and CO₂-loaded cases: 5 °C min⁻¹ scan rate.

Fig. S9 ¹³C NMR spectra of 30 wt% [MEA.Cl][EDA]=1:3 in ethylene glycol: a) before CO_2 absorption, b) after CO_2 absorption in the 5th cycle, and c) after CO_2 desorption in the 5th cycle.

No	DESs ^a	Molar weight	Ratio	Т (°С)	P (bar)	CO ₂ uptake (in mole) ^e	CO2 uptake (wt%)	Reference
1.	[ChCl:U]	82.79	1:2.5	40	11.5	0.046	2.35	25
2.	[ChCl:U]	86.58	1:2	40	57.8	0.036	2.00	26
3.	[ChCl:EG]	87.92	1:2	40	61.6	0.022	1.67	27
4.	[ChCl:Gly]	107.93	1:2	30	58.6	0.037	1.87	28
5.	[ChCl:LA]	93.18	1:15	30	35.9	0.099	1.85	29
6.	[ChCl:TEG]	148.06	1:4	25	10	0.042	1.30	31
7.	[ChCl:U]	75.97	1:4	25	10	0.024	1.14	"
8.	[ChCl:EG]	70.68	1:8	25	10	0.026	1.43	"
9.	[ChCl:Gly]	103.97	1:3	25	10	0.045	2.01	"
10	[ChCl:EA]	72.30	1:6	25	10	0.109	7.40	"
11.	[ChCl:DEA]	110.06	1:6	25	10	0.093	4.08	"
12.	[TBA.Br:EA]	98.41	1:6	25	10	0.116	5.91	"
13.	[TBABr:DEA]	136.18	1:6	25	10	0.104	3.73	"
14.	[TBABr:TEA]	192.49	1:3	25	10	0.083	2.07	"
15.	[BTPPC1:Gly]	114.92	1:12	25	10	0.051	2.06	"
16.	[BTPPBr: EA]	115.73	1:12	25	10	0.051	2.01	"
17.	[MTPPBr: EA]	103.38	1:6	25	10	0.144	7.14	"
18.	[MEA.Cl:EDA]	69.46	1:3	30	1	0.502^{b}	31.5 ^b	Present work
19.	[MEA.Cl:EDA]	69.46	1:3	30	1	0.536 ^c	33.7 ^c	Present work
20.	[MEA.Cl:EDA]	69.46	1:3	30	1	0.454^{d}	28.8^{d}	Present work
21.	[TEA.Cl:EDA]	91.49	1:3	30	1	0.354^{b}	17.5^{b}	Present work
22.	[UE.Cl:EDA]	69.20	1:3	30	1	0.184^{b}	11.7^{b}	Present work
23.	[TAE.Cl:EDA]	72.97	1:3	30	1	0.168^{b}	10.1^{b}	Present work

Table S1 CO₂ uptake capacities of representative deep eutectic solvents (DESs) in the literatures and present study

^{*a*}[ChCl:U]-Choline chloride:urea; [ChCl:EG]- Choline chloride: ethylene glycol; [ChCl:Gly]- Choline chloride: Glycerol; [ChCl:TEG]- Choline chloride:triethylene glycol; [ChCl:LA]- Choline chloride: lactic acid; [ChCl:MEA]-Choline Chloride: Monoethanolamine; [ChCl:DEA]- Choline chloride: Diethanolamine; [TBA.Br:EA]-Tetra butyl ammonium bromide: ethanolamine; [TBABr:DEA]- Tetra butyl ammonium bromide:Diethanolamine; [TBABr:TEA]- Tetra butyl ammonium bromide:Triethanolamine; [BTPPCl:Gly]-Benzyltriphenylphosphonium chloride: glycerol; [BTPPBr: EA]-n-butyltriphenylphosphonium bromide: Ethanolamine; [MTPPBr: EA]-Methytriphenylphosphonium bromide: Ethanolamine.

^cCO₂ uptake after 24 h.

 ${}^{d}\text{CO}_2$ uptake after 1 h with 10% water.

emol CO2/mol solvent

^bCO₂ uptake after 3 h.

Reference

- 1. J. Ren, L. B. Wu and B. G. Li, Ind. Eng. Chem. Res., 2013, 52, 8565-8570.
- 2. X. Y. Luo, F. Ding, W. J. Lin, Y. Q. Qi, H. R. Li and C. M. Wang, J. Phys. Chem. Lett., 2014, 5, 381-386.
- 3. Y. Xiang, M. C. Yan, Y. S. Choi, D. Young and S. Nesic, *Int. J. Greenh. Gas. Con.*, 2014, **30**, 125-132.
- 4. A. Veawab and A. Aroonwilas, Corros. Sci., 2002, 44, 967-987.