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Annex 1.  Computation of p-values  

a. Apply a log2-transformation to the matrix of microarray standardized data.  

b. Compute the values of the discriminating variable chosen (see Section 2.3).  

c. Determine the quantiles (Q) associated to the following series of cumulated 

relative frequencies: 1x10-6, 1x10-5, 1x10-4, 1x10-3, 1x10-2, 0.25, 0.5, 0.75, 0.99, 

0.999, 0.9999, 0.99999, 0.999999). To this aim we used the program Matlab 

v.7.10 (Mathworks, USA). Although “relative frequencies” and “probabilities” are 

different mathematical entities (i.e., probabilities are the asymptotic limit of the 

relative frequencies when the number of replications tend to infinity), herein we 

treat both concepts as equivalents given the great number of genes tested in 

the microarray. Note that quantiles Q0.25 and Q0.75 are of interest to determine 

the Inter-Quartile Range (IQR; IQR=Q0.75-Q0.25). The quantile Q0.50 is the median 

value of the distribution.  

d. Once the quantiles corresponding to the tails (Q1x10
-6

 to Q1x10
-2

 and Q0.99 to 

Q0.999999) are known, determine the best mathematical function that fits the 

probabilities p as a function of the quantile values (Q). Note that each tail has to 

be fitted separately. We used the CurveExpert program (SWREG digital river, 

USA) for this purpose. This software performs the process automatically by 

testing an ample menu of built-in fitting functions. Thus, a very high R2 

coefficient for the fitting is obtained. However, if a dedicated software is not 

available, the fitting of the tails can still be achieved by testing some simple 

functions, such as exponential (y=a.eb.x), potential (y=a.xb), and quadratic 

inverse (y=1/(a+b.x+c.x2)). 

e. Return to the original data sheet containing the values obtained in point b. 

Sort the data sequentially both in descending and ascending order according to 

the value of the discriminating variable. Select the rows comprised between the 

maximum (or minimum value as corresponds) of the discriminating variable and 
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the row in which the discriminating variable reaches a value higher than the 

quantile value associated to p=0.99 (or p=0.01 as corresponds). Copy these 

data to a new sheet together with the names of the associated probes and 

genes.  

f. Compute the associated probability in a descending-column order by 

introducing the fitting function previously determined in point (d). Now you have 

a presumptive list of up- and down-regulated genes and their associated p-

values. 

g. To get the final list of differentially expressed genes, filter the list obtained in 

the previous point according to the FDR criterion (see Annex 2). 

 

Annex 2.   Computation of the false discovery rate (FDR)  

FDR is defined as the “expected” value of the quotient between the number of 

false positive cases and the number of cases declared as significant.1-4 In our 

approach, the number of false positive cases is calculated by taking into 

consideration that the central region of the data always follows a Gaussian 

distribution (Figure 2.A, Section 2.2.1). From this central region it is then 

possible to estimate its extreme values. These extreme values can then be 

used as cut-offs of the tails at the entire data distribution, thus allowing us to 

compute the number of genes declared significant in each tail (Figure 2.B, 

Section 2.2.1), and hence, finally compute the FDR (Figure 3, Section 2.2.2).  

In brief:   

a. Compute the standard deviation (SD) for the Gaussian central region of the 

data distribution by using equation 7. 

SDGaussian central region = (1/2)(Q0.75-Q0.25)/0.6745                                                 (7) 

Based on the property of symmetry, the SDGaussian central region was obtained in 

equation 7 by averaging two available estimations of it, one from the right-side 

(SD1) and the other from the left-side (SD2). Both estimations are derived from 

the well-established relations present in Gaussian distributions, such that 

Q0.75=Q05+0.6745SD1 and Q0.25=Q0.5-0.6745SD2 respectively.  In addition, note 

that the mean value of the distribution has been substituted by the quantile Q050 

(i.e., the median value). The factor 0.6745 was taken from a normal z-

probabilities table. 

b.   Determine the expected extreme values of the discriminating variable for the 

genes which do not change their expression significantly (i.e., those belonging 

to the Gaussian central region) by using the equations 8 and 9. Taking a value 

of z= 3.09 is usually enough as it yields a value of p=0.001 at each tail of the 

distribution.  

 

𝐿𝑢 = 𝑈𝑝𝑝𝑒𝑟 𝐿𝑖𝑚𝑖𝑡 = 𝑄0.5 + 𝑧 𝑆𝐷𝐺𝑎𝑢𝑠𝑠𝑖𝑎𝑛 𝑐𝑒𝑛𝑡𝑟𝑎𝑙_𝑟𝑒𝑔𝑖𝑜𝑛                                                                                    

(8) 



 

𝐿𝐿 = 𝐿𝑜𝑤𝑒𝑟 𝐿𝑖𝑚𝑖𝑡 =  𝑄0.5 −  𝑧 𝑆𝐷𝐺𝑎𝑢𝑠𝑠𝑖𝑎𝑛 𝑐𝑒𝑛𝑡𝑟𝑎𝑙_𝑟𝑒𝑔𝑖𝑜𝑛                                                                                 

(9) 

 

c. Count the number of genes declared as significant. To this aim, count the 

cases in which the values of the discriminating variable exceed the allowed 

upper limit of the central region (n+= cases where discriminating variable value 

> Lu). Also count the number of genes in which the discriminating variable is 

lower than the lower limit of the central region (n- = cases where discriminating 

variable value < LL). This operation can be done by simple inspection of the 

data sheet.  

   

d. Compute the total number of genes declared significant (n*), by performing 

the following summation:  

 

                                     𝑛∗ = 𝑛+ + 𝑛−                                                                                 

(10)  

 

e. Compute the expected number of false positive genes: 

 

𝑁𝑜𝐸𝑥𝑝𝑒𝑐𝑡𝑒𝑑 𝐹𝑎𝑙𝑠𝑒(+)(𝑟𝑖𝑔ℎ𝑡 𝑡𝑎𝑖𝑙) = 𝑁𝑜𝐸𝑥𝑝𝑒𝑐𝑡𝑒𝑑 𝐹𝑎𝑙𝑠𝑒(+)(𝑙𝑒𝑓𝑡 𝑡𝑎𝑖𝑙) = 

 

                                               
1

2
 𝑁𝑜𝐺𝑒𝑛𝑒𝑠(𝐺𝑎𝑢𝑠𝑠𝑖𝑎𝑛 𝑐𝑒𝑛𝑡𝑟𝑎𝑙 𝑟𝑒𝑔𝑖𝑜𝑛)0. 001                 

(11) 

     

In turn, the number of genes comprised in the Gaussian central region that is 

required in equation 11 is calculated as follows:  

 

𝑁𝑜𝑔𝑒𝑛𝑒𝑠(𝐺𝑎𝑢𝑠𝑠𝑖𝑎𝑛 𝑐𝑒𝑛𝑡𝑟𝑎𝑙 𝑟𝑒𝑔𝑖𝑜𝑛) = 𝑁𝑜𝑔𝑒𝑛𝑒𝑠(𝑚𝑖𝑐𝑟𝑜𝑎𝑟𝑟𝑎𝑦) − (𝑛+ + 𝑛−)                     

(12)               

 

Importantly, according to the Gaussian model the number of false positives will 

always be lower or equal to the number declared significant from the tails of the 

entire empirical distribution (0≤FDR ≤1). 

 

f. Finally, the  percent of  false discovery rate (%FDR) can be computed as 

follows: 

 

%𝐹𝐷𝑅(𝑢𝑝𝑝𝑒𝑟−𝑟𝑒𝑔𝑢𝑙𝑎𝑡𝑒𝑑 𝑔𝑒𝑛𝑒𝑠) =
𝑁𝑜𝐸𝑥𝑝𝑒𝑐𝑡𝑒𝑑 𝐹𝑎𝑙𝑠𝑒 (+)(𝑟𝑖𝑔ℎ𝑡  𝑡𝑎𝑖𝑙)

𝑁+  100                                  

(13) 

  

%𝐹𝐷𝑅(𝑑𝑜𝑤𝑛−𝑟𝑒𝑔𝑢𝑙𝑎𝑡𝑒𝑑 𝑔𝑒𝑛𝑒𝑠) =
𝑁𝑜𝐸𝑥𝑝𝑒𝑐𝑡𝑒𝑑 𝐹𝑎𝑙𝑠𝑒 (+)(𝑙𝑒𝑓𝑡 𝑡𝑎𝑖𝑙)

𝑁−  100                                      

(14) 

 



g. In exceptional cases, when the FDR obtained is not satisfactory, it is 

necessary to return to equations 8 and 9. Modify the z-value in them so that its 

associated probability becomes lower than 1x10-3. For example, if z=3.891 this 

will result in a p-value=5x10-5 at each tail of the Gaussian central distribution.  

Now repeat the computation procedure to obtain the new FDR values.  

h. If the FDR values in equations 13 and 14 are satisfactory, the procedure is 

stopped, and two FDR values will be available, one for each tail of the data 

distribution. 

 

Note: As general procedure, we have established that it is necessary to choose 
an starting value for probability p=(1-alpha error) and apply iteratively our 
algorithm until to arrive to an acceptable value of FDR (Figure 3, Section 2.2.2). 
In practice, we recommended the use of two particular z-values (z=3.09 and 
z=3.89), which must be tested in sequential order. As was stated previously, the 
value of z=3.09 is associated to a p-value of 1x10-3, while z=3.89 provides a p-
value of 5x10-5. By using these two herein suggested z-values, we have verified 
that FDR in our approach showed an excellent performance (median 
value=0.67%, interquartile range IQR = 0.87%; Section 3.2). Instead, in a 
quarter of the microarrays tested, the FDR computed by LIMMA, applying 
Empirical Bayes and Benjamini-Hochberg, FDR ranged between 17 to 45% 
(Section 3.2) while in another quarter of the microarrays tested by LIMMA, the 
FDR was as high (~85-90%) that not allowed the detection of any gene, while 
we could detect (Section 3.2, and Table S1 in ESI).  In fact, The FDR 
performance in our approach using the suggested z-values was associated to 
an excellent sensitivity in the detection of differential expressed genes (Section 
3.2 and Section 3.4).  
 
However, there is no problem if it is wished to assay other possible z-values. 
For example, in-between the suggested z-values it can tested a value of 
z=3.291 which is associated to p-value= 5x10-4. Instead, if it is wished or 
needed to test a z-value higher than z=3.89, it can attempt with a value of 
z=4.417, which is associated to p-value=5x10-6. All the p-values herein given 
were taken from a Z-normal table, and correspond to one-side tail. In any case, 
each one of the z-value considered, must be applied to equations 8-9, and then 
follow the algorithm through equations 10-14 until to arrive to the corresponding 
FDR values. This cycle must be repeated iteratively for each one of the z-values 
tested until to arrive to an acceptable FDR value (Figure 3, Section 2.2.2). 
 

References 

1. Y. Benjamini, Y. Hochberg. Controlling the False Discovery Rate: A 
Practical and Powerful Approach to Multiple Testing. J. Royal Statistical 
Society, Series B (Methodological), 1995, 57: 289-300.  

2. B. Efron, R. Tibshirani, J. D. Storey, V. Tusher. Empirical Bayes Analysis 
of a Microarray Experiment. J American Statistical Association, 2001, 96, 
1151-1160. 

3. K. Shedden, W. Chen, R. Kuick,  D. Ghosh,  J. Macdonald  et al. 
Comparison of seven methods for producing Affymetrix expression scores 



based on False Discovery Rates in disease profiling data. BMC 
Bioinformatics, 2005, 6: 26.  

4. E. Hansen, K. F. Kerr. A comparison of two classes of methods for 
estimating false discovery rates in microarray studies. Scientifica, 2012, 
article ID: 519394. Available at: http://www.hindawi.com/ 
journals/scientifica/2012/519394/abs/ 

 

 

 

 

Table S1. Comparison of the Q-GDEMAR performance against the results obtained by the 
reference LIMMA. The number of deregulated genes detected is compared at a similar level of 
FDR. Calculations were done after the log2-transformation. The FDR values are indicated 
between parentheses (as percent). 

 Microarray 

data  set 

Method Up-regulated 

Genes 

Down-regulated 

genes 

GSE35713 
(44 control samples 
vs. 11 treatment 
samples)a 

∆1 Difference 242(0.69%) 638(0.19%) 

LIMMA 0(0.69%) 1(0.19%) 

Median Ratio 169(1.23%) 398(0.52%) 

LIMMA  163(1.23%) 6(0.52%) 

∆2 Difference 456(4.58%) 840(2.44%) 

LIMMA 650(4.58%) 33(2.44%) 

GSE36297 
(10 control samples 
vs. 6 treatment 
samples)b 

Median Ratio     776 (0.44%)          558 (2.98%) 

LIMMA           0 (0.44%)          0 (2.98%) 

∆2 Difference        108(0.76%)     120(1.14%) 

LIMMA         0 (0.76%)              0 (1.14%) 

∆1 Difference     172 (0.60%)              104(0.99%) 

LIMMA          0 (0.60%)                0(0.99%) 

GSE48754 
(5 control samples 
vs. 3 treatment 
samples)c 

∆2 Difference 538(0.39%) 877(0.02%) 

LIMMA 17(0.39%) 0(0.02%) 

Median Ratio 477(0.46%) 345(0.64%) 

LIMMA 17(0.46%) 1(0.63%) 

∆1 Difference 292(0.74%) 263(0.82%) 

LIMMA 19(0.74%) 1(0.82%) 

GSE5281 

(10  control 
samples vs. 3 
treatment 
samples)d 

Median Ratio 2845 (0.66%) 3067 (0.61%) 

∆1 Difference   911 (2.35%)       1 (21.4%) 

∆2 Difference    686 (3.05%)       1211 (1.7%) 

LIMMA(*)        0 (99.6%)        0 (99.6%) 

GSE54992 
(6 control samples  
vs. 9 treatment 
samples)e  
 

∆1 Difference 1368 (1.48%) 1745 (1.16%) 

LIMMA 3145 (1.48%) 2506 (1.16%) 

∆2 Difference 737 (2.85%)  826 (2.54%) 

LIMMA 3830 (2.85%) 3226 (2.54%) 

Median Ratio  2436 (0.81%) 1663 (1.19%) 

LIMMA 2591 (0.81%) 2529 (1.19%) 

http://www.hindawi.com/%20journals/scientifica/2012/519394/abs/
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GSE48060 
(21control samples 
vs. 31 treatment 
samples)f 

∆2 Difference 482 (0.42%) 1605 (0.12%) 

LIMMA 1 (0.42%) 0 (0.12%) 

Median Ratio 141 (1.48%) 405 (0.52%) 

LIMMA 8 (1.48%) 1 (0.52%) 

∆1 Difference 24 (7.54%) 735 (2.39%) 

LIMMA 86 (7.54%) 0 (2.39%) 

GSE28619 
(7 control samples 
vs. 15 treatment 
samples)g 

∆2 Difference 7496(0.39%) 5481(0.54%) 
LIMMA 3378 (0.39%) 1128(0.54%) 
Median Ratio  6616(0.47%) 5034(0.68%) 
LIMMA 3526(0.47%) 2306(0.68%) 
∆1 Difference 3705(0.96%) 3312(1,07%) 
LIMMA 4058(0.96%) 2631(1,07%) 

GSE1919 

(5 control samples 
vs. 5  treatment 
samples)h 

Median Ratio 949 (0.55%) 645 (0.82%) 
LIMMA 56 (0.55%) 50 (0.82%) 
∆1 Difference 800 (0.67%) 554 (0.97%) 
LIMMA 59 (0.67%) 56 (0.97%) 
∆2 Difference 238 (2.44%) 295 (1.97%) 
LIMMA 167 (2.44%) 100 (1.97%) 

GSE34308 

 
(5 control samples 
vs. 5  treatment 
samples)i 
 

∆2 Difference 1254 (0.16%) 592(0.34%) 

LIMMA               0(0.16%) 0(0.34%) 

Median Ratio 849 (0.24%) 226(0.91%) 

LIMMA 0(0.24%) 0(0.91%) 

∆1 Difference 523(0.39%) 212(0.98%) 

LIMMA 0(0.39%) 0(0.98%) 

GSE1297 
(7 control samples 
vs. 2 treatment 
samples)j 

Median Ratio 453(0.22%) 541(0.18%) 

LIMMA 0(0.22%) 0(0.18%) 

∆2 Difference 541(0.18%) 135(0.77%) 

LIMMA 0(0.18%) 0(0.77%) 

GSE11882 
(10 control samples 
vs 11 treatment 
samples)k 

Median Ratio 2244(0.09%) 641(0.32%) 

LIMMA 0(0.09%) 0(0.32%) 

∆2 Difference 2640(0.75%) 1315(0.15%) 

LIMMA 0(0.75%) 0(0.15%) 

∆1 Difference 2225(0.09%) 596(0.34%) 

LIMMA 0(0.09%) 0(0.34%) 

GSE46922 
(10 control samples 
vs 11 treatment  
samples)l 

Median Ratio 3519(0.05%) 620(0.34%) 

LIMMA 0(0.05%) 0(0.34%) 

∆2 Difference 852(0.25%) 1315(0.15%) 

LIMMA 0(0.25%) 0(0.15%) 

∆1 Difference 1330(0.15%) 2667(0.07%) 

LIMMA 0(0.15%) 0(0.07%) 

Across of the analysed microarrays, control and treatment samples correspond to the 
following conditions: 

a
Healthy vs. patients with long-time diabetes type 1; 

b
Normal vs. 

patients with mutation in insulin receptor; 
c
Normal vs. patients with Swedish myopathy; 

d
Male vs. Female in healthy ancient; 

e
Healthy vs. patients with tuberculosis; 

f
Normal vs. 

patients with first-time myocardial infarct; 
g
Healthy vs. patients with alcoholic hepatitis; 

h
Healthy vs. patients with rheumatoid arthritis; 

i
Healthy vs. patients with childhood cerebral 

form of X-linked adreno-leuko dystrophy; 
j,k

Male vs. Female in healthy acient; 
l
acute vs. 

chronic immune thrombocytopenia.    



(*)
  In this case, LIMMA did not allow to detect any significant gene due to the high value of 

FDR (99.6%) computed for all the genes, whichever were their log2(FC) values. 

 

 ------------------------------------------------------------------------------------------------------------------------------------------------------------------ 

 

 

 

 

 

 

Table 2S: Efficiency of the different Q-GDEMAR variants and shape characterization of the 

distributions. The different measurements of the variant’s efficiency are computed on the basis 

of results in Table S1. The parameters of the distributions are computed over each microarray 

data-set, using a given discriminant variant on the log2-transformed values down-loaded from 

GEO database. 

 

 
Microarray 
Data   //  
Variant 
Methods                              

Data Distribution                                        
Parameters 

Variant’s Efficiency 
 

Skewness 
Coefficient 

 

Kurtosis 
Coefficient 
 
 

Φ index (a) Total 
Significant 
Genes 
Detected 

𝑭𝑫𝑹̅̅ ̅̅ ̅̅  
     (%) 

GSE35713  
∆1-difference            -0.5                6 0.12 880 0.33 
Median Ratio            -0.3                7 0.23 567 0.73 
∆2-difference            -0.7              11 0.22 1296 3.16 

GSE36297 
Median Ratio 0.7 28.7 0.57 2442 0.07 
∆1-difference 0.4 10.5 0.21 276 0.75 
∆2-difference -0.04 19.2 0.20 228 0.96 

GSE48754 
∆2-difference -0.2 21 0.40 1415 0.16 
Median Ratio 1.6 31 0.31 822 0.53 
∆1-difference 0.4 14.5 0.21 555 0.78 

GSE5281 
∆2-difference 2.4 27 0.55 5912 0.63 
Median Ratio -0.2 5 0.26 1897 2.12 
∆1-difference 1.1 5 0.11 912 2.37 

GSE54992 
Median Ratio               173           33790 0.89 4225 0.93 
∆1-difference -0.5 9.4 0.39 1745 1.30 
∆2-difference -0.3 7.7     0.25 1563 2.68 

GSE48060 
∆2-difference               1.0             65 0.21 2087 0.24 
∆1-difference 0.7              6 0.12 759 2.55 



(a)Φ index = (𝟏 −
𝝈𝒄𝒆𝒏𝒕𝒓𝒂𝒍

𝝈𝒈𝒍𝒐𝒃𝒂𝒍
), where σcentral is the standard deviation of the Gaussian 

central  region,  and  σglobal  is the standard deviation of the entire data distribution.   

 

----------------------------------------------------------------------------------------------------------------------------- 

Table 3S: Matrix of correlation between some intrinsic characteristics of the data distributions 

(Skewness and Kurtosis) and several output measurements (Φ index, Total genes 

detected,FDR̅̅ ̅̅ ̅̅ ) computed upon the Q-GDEMAR variants shown in Table S2. Data were 

restricted to those belonging to a unique sub-set (HG-U133Plus2, Affymetrix). Pearson 

correlation coefficients (R) are displayed in the upper triangular matrix, while their significance 

probabilities are in the lower triangular matrix.  

 

(n=23) Skewness Kurtosis Φ index Genes 
detected 

FDR ̅̅ ̅̅ ̅̅ (%) 

Skewness 1 0.6242** 0.5770** 0.2427 -0.1887 

Kurtosis 0.0015 1 0.6249** 0.3224 -0.0880 

Φ index 0.0039 0.0014 1 0.8060** -0.3224 

Genes 
detected 

0.2645 0.1335 0.0000 1 -0.2492 

FDR ̅̅ ̅̅ ̅̅  (%) 0.3884 0.6985 0.1335 0.2515 1 

GSE28619 
Median Ratio             4.8             72.5 0.95 11050 0.56 
∆2-difference            0.3             23.3 0.90 12977 0.33 
∆1-difference             -0.3 

 
          17.3 0.67 7017 1.01 

GSE1919 
Median Ratio            4      236 0.89 949 0.66 
∆1-difference           31     3100 0.97 1354 0.79 
∆2-difference                 0.4         11   0.92  533  2.18 

GSE34308 
∆2-difference 0.9         27.6 0.46 1846 0.22 
Median Ratio 3.1        46.3                              0.37 1075 0.38 
∆1-difference 0.8        13.6 0.27 724 0.58 

GSE1297 
Median Ratio 1.9  41.1 0.45 1572 2.44 
∆2-difference -0.21 7.3 0.23 237 0.87 
      

GSE11882 
Median Ratio 147.2 24100 0.81           2885 0.14 
∆2-difference 79.5 7200 0.92 3955 0.55 
∆1-difference 1.2              18.8 0.48 2821 0.14 

GSE46922 
Median Ratio                6.2              870 0.91 6669  0.005 
∆1-difference              -0.8    8.8 0.56 3997 0.09 
∆2-difference             -0.2            5.9 0.11 1472 0.29 



 

In Table 3S, note the occurrence of four very significant correlations (**, p ≤ 
0.01) despite the moderate values of the R coefficients. Importantly, the “total 
number of genes detected” correlates strongly with “Φ index” (R=0.8060), and 
this correlation persists even after being corrected by kurtosis (partial 
correlation Rgenes_Φ(kurtosis)=0.8408) or skewness (partial correlation 
Rgenes_Φ.(skewness)=0.8194). On the other hand, the remaining variables, when 
paired, only yield low partial correlation coefficients (data not shown). All 
together this means that some co-linear relations are present in the data. For 
this reason, Table S3 was subjected to principal component analysis (see 
Figure 7, main text). 


