Electronic Supplementary Material (ESI) for New Journal of Chemistry. This journal is © The Royal Society of Chemistry and the Centre National de la Recherche Scientifique 2015

Supplementary data for:

A highly selective fluorescent sensor for Hg(II) ions based on an NTe₂ chelating motif and its application in living cell imaging

Shao-Lun Kao, Parthiban Venkatesan and and Shu-Pao Wu* Department of Applied Chemistry, National Chiao Tung University, Hsinchu, Taiwan 300, Republic of China Tel.: +886-3-5712121-ext56506 Fax: +886-3-5723764 E-mail: spwu@mail.nctu.edu.tw

Content:

1. Figure S1. ¹H NMR (300 MHz, CDCl₃) spectra of bis(2-(phenyltellanyl)ethyl) amine.

2. Figure S2. ¹³C NMR (75 MHz, CDCl₃) spectra of bis(2-(phenyltellanyl)ethyl) amine.

3. Figure S3. ¹H NMR (300 MHz, CDCl₃) spectra of chemosensor NBDTe.

4. Figure S4. ¹³C NMR (75 MHz, CDCl₃) spectra of chemosensor NBDTe.

5. Figure S5. Absorption spectrum of chemosensor NBDTe (30 μ M) in the presence

of Hg²⁺ and other metal ion (150 μ M) in acetonitrile-water (v/v, 8:2) solutions.

6. Figure S6. Absorption changes of chemosensor NBDTe (30 μ M) in the presence of various equivalents of Hg²⁺ in acetonitrile-water (v/v, 4:1) solutions.

7. Figure S7. ESI Mass spectra of chemosensor NBDTe in the presence of Hg^{2+} .

8. Figure S8. Calibration curve of NBDTe -Hg²⁺ in CH₃CN/H₂O (v/v = 4:1).

9. Figure S9. Reversible binding of Hg^{2+} to NBDTe. Uv-vis spectra of (a) NBDTe,

(b) **NBDTe** in the presence of Hg²⁺(90 μ M), and (c) **NBDTe** in the presence of Hg²⁺ (90 μ M) upon addition of Na₂S (360 μ M).

10. Figure S10. Reversible binding of Hg⁺ to NBDTe. Hg²⁺ (90 μ M) were added to the NBDTe solutions, resulting NBDTe-Hg²⁺ complex.

Figure S2. ¹³C NMR (75 MHz, CDCl₃) spectra of bis(2-(phenyltellanyl)ethyl)amine.

Figure S4. ¹³C NMR (75 MHz, CDCl₃) spectra of chemosensor NBDTe.

Figure S5. Absorption spectrum of chemosensor **NBDTe** (30 μ M) in the presence of Hg²⁺ and other metal ion (150 μ M) in acetonitrile-water (v/v = 4:1) solutions.

Figure S6. Absorption changes of chemosensor **NBDTe** (30 μ M) in the presence of various equivalents of Hg²⁺ in acetonitrile-water (v/v = 4:1) solutions.

Figure S7. ESI Mass spectra of chemosensor NBDTe in the presence of Hg^{2+} .

Figure S8. Calibration curve of **NBDTe** -Hg²⁺ in CH₃CN/H₂O (v/v = 4:1). The excitation wavelength was 463 nm and observed wavelength was 532 nm. The limit of detection was 4.2 μ M of **NBDTe** for binding Hg²⁺ based on 3 × δ_{blank}/k (where δ_{blank} is the standard deviation of the blank solution and k is the slope of calibration plot). LOD = 3 × 0.738 / (4.98 × 10⁵) = 4.2 μ M.

Figure S9. Reversible binding of Hg²⁺ to **NBDTe**. Uv-vis spectra of (a) **NBDTe**, (b) **NBDTe** in the presence of Hg²⁺(90 μ M), and (c) **NBDTe** in the presence of Hg²⁺ (90 μ M) upon addition of Na₂S (360 μ M).

Figure S10. Reversible binding of Hg⁺ to **NBDTe**. Hg²⁺ (90 μ M) were added to the **NBDTe** solutions, resulting **NBDTe**-Hg²⁺ complex. Na₂S (270 μ M) was added to remove Hg²⁺. The Na₂S -based regeneration process was repeated by three times.