Supplementary Material

Novel fluorescent probes based on rhodamine for naked-eye detection of Fe³⁺ and application of imaging in living cells

Meipan Yang, Wenfei Meng, Na Su, Xiaojing Liu, Ming Zhang, Bingqin Yang*

Key Laboratory of Synthetic and Natural Functional Molecule Chemistry, Ministry of Education, College of Chemistry and Materials Science, Northwest University, Xi'an 710069, PR China

Table of contents

- 1. X-ray tables of probes L1 and L2.
- 2. Spectroscopic properties
- 3. ¹H NMR, ¹³C NMR and MS spectra

Compound	L1
Formula	$C_{35}H_{37}N_3O_2S$
Formula weight	563.74
Temperature (K)	296(2)
Wavelength (Å)	0.71073
Crystal system	Monoclinic
space group	P2(1)/c
Volume (Å ³)	3035.2(9)
Ζ	4
Unit cell dimensions /(Å, °)	$a = 8.7284(15)$ $\alpha = 90$
	b = 17.138(3) β = 90.986(4)
	$c = 20.293(4)$ $\gamma = 90$
Calculated density (Mg/m ³)	1.234
Absorption coefficient (mm ⁻¹)	0.143
F(000)	1200
Crystal size (mm ³)	0.37 x 0.29 x 0.14
Theta range for data collection (°)	2.01 - 25.05
Limiting indices	-10<=h<=9
	-16<=k<=20
	-24<=1<=24
Reflections collected / unique	14870 / 5365 [<i>R</i> (int) = 0.0844]
Completeness to $\theta = 25.10$	99.7 %
Max. and min. transmission	0.9800 and 0.9498
Refinement method	Full-matrix least-squares on F^2
Data / restraints / parameters	5365 / 4 /397
Goodness-of-fit on F^2	1.028
Final R indices [I> 2σ (I)]	R1 = 0.0804, $wR2 = 0.1809$
R indices (all data)	R1 = 0.1756, $wR2 = 0.2260$
Largest diff. peak and hole/(e. Å $\mbox{-}$	0.373 and -0.335
3)	
CCDC	1029970

_

Table S1 X-ray table of compound L1.

Table S2 X-ray table of compound L2.

Compound	L2
Formula	$C_{37}H_{39}N_3O_2S$
Formula weight	589.21
Temperature (K)	296(2)
Wavelength (Å)	0.71073
Crystal system	Orthorhombic
space group	P2(1)2(1)2(1)
Volume (Å ³)	3199.7(5)
Z	4
Unit cell dimensions /(Å, °)	$a = 9.0224(8)$ $\alpha = 90$
	b =11.6701 (10) β= 90
	$c = 30.389(3)$ $\gamma = 90$
Calculated density (Mg/m ³)	1.224
Absorption coefficient (mm ⁻¹)	0.138
F(000)	1256
Crystal size (mm ³)	0.36x 0.31 x 0.23
Theta range for data collection (°)	1.87 - 25.10
Limiting indices	-9<=h<=10
	-11<=k<=13
	-33<=1<=36
Reflections collected / unique	16148 / 5709 [<i>R</i> (int) = 0.0486]
Completeness to $\theta = 25.10$	99.9 %
Max. and min. transmission	0.9684 and 0.9521
Refinement method	Full-matrix least-squares on F^2
Data / restraints / parameters	5709 / 5 /414
Goodness-of-fit on F^2	1.063
Final R indices $[I \ge 2\sigma(I)]$	R1 = 0.0580, wR2 = 0.1180
R indices (all data)	R1 = 0.0722, $wR2 = 0.1245$
Largest diff. peak and hole/(e. Å $^{-}$	0.178 and -0.150
3)	
CCDC	1029971

Fig. S1 Absorbance (a) and fluorescence (b) titration spectra of L2 (20 μ M) in methanol-water (1:1, v/v) upon addition of Fe³⁺ (λ_{ex} =550 nm).

Fig. S2 Benesi-Hildebrand plot of L1 using 1:1 stoichiometry for association betweenL1 and Fe³⁺.

Fig. S3 The Job's plot of probe L2 and Fe³⁺ (the total concentration was 20 μ M).

Fig. S4 Fluorescence spectra of L1 (a) and L2 (b) upon addition of different metal ions in methanol-water (1/1, v/v) solution.

Fig. S5 Fluorescence intensity changes of **L2** (20 μM) upon the addition of various metal ions (20 μM) in and without the presence of Fe³⁺ (20 μM). The black bars represent the fluorescence response of **L2** and competing ions: 1, blank; 2 K⁺; 3, Ca²⁺; 4, Cd²⁺; 5, Mg²⁺; 6, Co²⁺; 7, Mn²⁺; 8, Cu²⁺; 9, Al³⁺; 10, Zn²⁺; 11, Ni²⁺; 12, Fe²⁺; 13, Hg²⁺; 14, Cr³⁺; 15, Na⁺; 16, Fe³⁺. The red bars represent the subsequent addition of 20 μM Fe³⁺ to the above solutions. $\lambda_{ex} = 550$ nm.

Fig. S6 Effect of pH on fluorescence intensity of L2 in the absence and presence of Fe^{3+} .

Fig. S7 Confocal fluorescence and bright-field images of HepG2 cells (scale bar = 20 μ M). (A) Cells incubated with 20 μ M L2 for 60 min. (B) and then further incubated with 20 μ M Fe³⁺ for 90 min. (C) Bright-field image of cells shown in panel, confirming their viability. (D) The overlay image of (B) and (C).

Fig. S8 IR spectra of L1, L1 + Fe^{3+} , L2, L2 + Fe^{3+} .

Fig. S9 ¹H NMR spectrum changes of L1 (1) and L2 (2) after addition of Fe^{3+} .

Fig. S10 ¹H NMR spectrum of L1 in DMSO- d_6

Fig. S11 ¹³C NMR spectrum of L1 in CDCl₃.

Fig. S12 Mass spectrum of L1.

Fig. S13 ¹H NMR spectrum of L2 in DMSO- d_6

Fig. S14 13 C NMR spectrum of L2 in CDCl₃.

Fig. S15 Mass spectrum of L2.