Electronic Supplementary Material (ESI) for New Journal of Chemistry. This journal is © The Royal Society of Chemistry and the Centre National de la Recherche Scientifique 2015

Supporting Information

Poly(vinylpyrrolidone) stabilized aluminium nanoparticles obtained from the reaction of SiCl₄ with LiAlH₄

Sanyasinaidu Gottapu,^[a] Santanu Kumar Padhi,^[b] Mamidipudi Ghanashyam Krishna,^[b] and Krishnamurthi Muralidharan^[* a]

^a School of chemistry, ^b School of Physics and Advanced Centre of Research in High Energy Materials (ACRHEM), University of Hyderabad, Gachibowli, Hyderabad, Telangana and India-500046.

Fig. S1 ²⁹Si NMR spectrum of the reaction mixture (the peak at δ -107.89 ppm is for glass)

Fig. S2 PXRD spectrum of aluminium without polymer

Fig. S3 TEM image of aluminium without polymer

Fig. S4: (a) HRTEM image of bare Al with inset FFT and (b) Corresponding SAED pattern.

Fig. S5: Bright field TEM images of bare Al particles (a) showing oxide layer on the surface and (b) Corresponding HRTEM.

Fig.S6: Mechanism of formation of Al-PVP nanocomposite

Fig. S7 ²⁷Al MAS NMR spectra of Al-PVP nanocomposite

Fig. S8. (a) Selected area electron diffraction pattern of Al-PVP composite nanocrystal indexed based on (b) Al simulated diffraction pattern using Web-based Electron Microscopy application software: web- EMAPS.¹

1. J. M. Zuo, J. C. Mabon and Web-based Electron Microscopy Application Software: Web-EMAPS, Microsc Microanal 10(Suppl 2), 2004.

Available online: http://emaps.mrl.uiuc.edu/

Fig. S9 Computed Williamson-Hall plot of Al-PVP composite

Fig. S10: PXRD pattern of Al-PVP nanocomposite obtained after thermal analysis revealing the growth of alumina phases.

OXIDATION OF ALUMINIUM NANOPARTICLES

When aluminium nanoparticle reacting with oxygen it will form Al₂O₃ and increases mass of aluminium. (L.Chen, W. Song, J. Lv, X. Chen and C. Xie, Materials Chemistry and Physics, 2010, 120, 670-675.)

$$4Al + 3O_2 \longrightarrow 2Al_2O_3$$

Liang Chen et.al calculated active aluminium in aluminium nanoparticles by using the equation below

$$m_{Al} = \frac{4}{3} \times \frac{M_{Al}}{M_{O_2}} m_{O_2} = 1.125 m_{O_2}$$

 m_{Al} = mass of the aluminium nanoparticles reacted in oxidation

 M_{Al} = formula weight of Al

 M_{O_2} = formula weight of O₂

 $m_{O_2} = \Delta m$ (mass gain form TG), $m_{O_2} = mass$ of the reacted O₂

Accordingly, since we have seen 56.03 % weight gain in TG it will give active Al as 63.03 %

Fig. S11: TG-DTG-DTA plots of Al-PVP composite showing two stage of oxidation (experiment under oxygen, nitrogen and argon)

Fig. S12: PXRD spectrum of Al-PVP composite after one year.