Electronic Supplementary Material (ESI) for New Journal of Chemistry. This journal is © The Royal Society of Chemistry and the Centre National de la Recherche Scientifique 2015

Supplementary information

Conformational preferences of β -sheet structures in cyclopropanecontaining γ -peptides

Ji Hyang Lee,^a Hae Sook Park^b and Young Kee Kang^{*a}

 ^a Department of Chemistry and BK21 PLUS Research Team, Chungbuk National University, Cheongju, Chungbuk 361-763, Republic of Korea. E-mail: ykkang@chungbuk.ac.kr; Fax: +82-43-273-2991; Tel: +82-43-261-2285
 ^b Department of Nursing, Cheju Halla University, Cheju 690-708, Republic of Korea.

 Page
 Contents

 s1
 Table of Contents

 s2
 Table S1 Geometric parameters and strengths of inter-strand H-bonds of β-sheets of the Ac-(γAmc₃-1)₂-NHMe peptide

 s3
 Table S2 Geometric parameters and strengths of inter-strand H-bonds of β-sheets of the Ac-(γAmc₃-1)₄-NHMe peptide

 s4
 Table S3 Geometric parameters and strengths of inter-strand H-bonds of β-sheets of the Ac-(γAmc₃-1)₄-NHMe peptide

 s5
 Table S4 Deformation energies of β-sheets of Ac-(γAmc₃-1)_n-NHMe peptides

14010 01							·	
	N–H···O H-bonds			C−H···O H-bonds				
Type ^b	HB^{c}	<i>d</i> (NH…O)	<i>Ө</i> (N–H…O)	ΔE_2^d	HB ^c	<i>d</i> (CH…O)	<i>θ</i> (С–Н····О)	ΔE_2^d
р	Ia	1.92	173.6	8.64	II _a	2.64	140.9	0.17
	I _b	1.91	161.4	9.15	II _b	2.42	135.4	0.68
	Ic	1.93	167.5	6.18	II _c	2.47	139.2	0.94
	av.	1.92	167.5	23.97 ^e	av.	2.51	138.5	1.79 ^e
ap	I_a'	1.94	167.0	6.94	${\rm II}_{\rm a}{}^{\prime}$	2.47	138.5	0.75
	I _b ′	2.01	160.4	6.56	II _b ′	2.31	141.8	1.27
	I _c ′	2.07	152.0	2.32	II _c ′	2.76	110.0	0.03
	av.	2.01	159.8	15.82^{e}	av.	2.51	130.1	2.05^{e}

Table S1 Geometric parameters and strengths of inter-strand H-bonds of β -sheets of the Ac-(γ Amc₃-1)₂-NHMe peptide^{*a*}

^{*a*} Optimized at the M06-2X/6-31+G(d) level of theory; all distances and angles are in Å and degrees, respectively. ^{*b*} **p** and **ap** denote parallel and antiparallel β -sheets, respectively. ^{*c*} Defined in Fig. 3a. ^{*d*} The second perturbation energy (kcal mol⁻¹) of the lone pair orbitals of the carbonyl oxygen with the corresponding N–H (or C–H) antibonding orbital calculated at the M06-2X/cc-pVTZ level of theory. ^{*e*} The sum of ΔE_2 values in each strand.

	N–H···O H-bonds			C–H···O H-bonds				
Type ^b	HB^{c}	<i>d</i> (NH…O)	<i>Ө</i> (N–H…O)	ΔE_2^d	HB^{c}	<i>d</i> (CH…O)	<i>θ</i> (С–Н…О)	ΔE_2^d
р	Ia	1.93	172.2	8.58	II _a	2.61	140.1	0.17
	I _b	1.90	164.2	8.36	II _b	2.51	134.6	0.55
	Ic	1.93	164.1	7.81	II _c	2.45	138.2	0.70
	Id	1.93	161.5	8.37	II _d	2.37	138.9	0.84
	Ie	1.93	167.6	6.26	IIe	2.48	139.0	0.90
	av.	1.92	165.9	39.38 ^e	av.	2.48	138.2	3.16 ^e
ap	I_a'	1.96	166.2	6.44	II _a ′	2.50	136.7	0.29
	I_b'	1.95	161.9	7.83	II _b ′	2.28	143.8	1.37
	I _c ′	1.99	170.5	5.83	II _c ′	2.59	138.4	0.17
	I_d'	1.99	161.7	5.54	I_d'	2.30	143.7	1.43
	I _e ′	1.98	162.3	6.41	II _e ′	2.48	140.1	0.27
	av.	1.97	164.5	32.05^{e}	av.	2.43	140.6	3.53 ^e

Table S2 Geometric parameters and strengths of inter-strand H-bonds of β -sheets of the Ac-(γ Amc₃-1)₄-NHMe peptide^{*a*}

^{*a*} Optimized at the M06-2X/6-31+G(d) level of theory; all distances and angles are in Å and degrees, respectively. ^{*b*} **p** and **ap** denote parallel and antiparallel β -sheets, respectively. ^{*c*} Defined in Fig. 3b. ^{*d*} The second perturbation energy (kcal mol⁻¹) of the lone pair orbitals of the carbonyl oxygen with the corresponding N–H (or C–H) antibonding orbital calculated at the M06-2X/cc-pVTZ level of theory. ^{*e*} The sum of ΔE_2 values in each strand.

	N–H···O H-bonds			C–H···O H-bonds				
Type ^b	HB^{c}	<i>d</i> (NH…O)	<i>Ө</i> (N–H…O)	ΔE_2^d	HB^{c}	<i>d</i> (CH…O)	<i>Ө</i> (С–Н…О)	ΔE_2^d
р	Ia	1.93	171.2	8.31	II _a	2.59	139.8	0.18
	I _b	1.90	164.7	8.31	II_b	2.50	135.3	0.59
	Ic	1.93	164.0	7.86	II _c	2.44	138.6	0.70
	Id	1.93	163.6	7.69	II _d	2.45	138.0	0.71
	Ie	1.93	163.6	7.66	IIe	2.44	138.4	0.74
	I_{f}	1.92	161.8	8.55	II_{f}	2.36	139.2	0.88
	Ig	1.93	166.9	6.16	II_{g}	2.46	139.5	0.97
	av.	1.93	165.1	54.54 ^e	av.	2.46	138.4	4.77 ^e
ap	I_a'	1.95	167.1	6.32	II _a ′	2.48	138.4	0.26
	I _b ′	1.99	162.8	5.58	II_{b}'	2.37	143.2	1.04
	I _c ′	2.01	158.6	5.51	II _c ′	2.31	141.3	1.28
	I_d'	2.02	161.1	6.25	II_{d}'	2.30	144.3	0.60
	I _e ′	2.02	165.5	5.39	II _e ′	2.43	143.2	0.28
	I_{f}'	2.02	159.0	4.72	${ m II_{f}}'$	2.31	139.4	1.29
	I_{g}'	1.99	161.8	6.46	II_{g}'	2.46	139.3	0.31
	av.	2.00	162.3	40.23^{e}	av.	2.38	141.3	5.06^{e}

Table S3 Geometric parameters and strengths of inter-strand H-bonds of β -sheets of the Ac-(γ Amc₃-1)₆-NHMe peptide^{*a*}

^{*a*} Optimized at the M06-2X/6-31+G(d) level of theory; all distances and angles are in Å and degrees, respectively. ^{*b*} **p** and **ap** denote parallel and antiparallel β -sheets, respectively. ^{*c*} Defined in Fig. 3c. ^{*d*} The second perturbation energy (kcal mol⁻¹) of the lone pair orbitals of the carbonyl oxygen with the corresponding N–H (or C–H) antibonding orbital calculated at the M06-2X/cc-pVTZ level of theory. ^{*e*} The sum of ΔE_2 values in each strand.

п	Type ^b	$\Delta E_{\rm def,A}{}^c$	$\Delta E_{\rm def,B}^{c}$	$\Delta E_{\mathrm{def}}{}^d$
2	р	1.24	0.80	2.04
	ар	0.33	0.97	1.29
4	р	2.20	1.72	3.92
	ap	2.57	1.27	3.84
6	р	3.11	2.94	6.06
	ap	3.66	2.36	6.02

Table S4 Deformation energies (kcal mol⁻¹) of β -sheets of Ac-(γ Amc₃-1)_n-NHMe peptides^{*a*}

^{*a*} Calculated at the M06-2X/cc-pVTZ level of theory without BSSE corrections. ^{*b*} **p** and **ap** denote parallel and antiparallel β -sheets, respectively. ^{*c*} Relative deformation energies of each strand of β -sheets. ^{*d*} The sum of $\Delta E_{def,A}$ and $\Delta E_{def,B}$.