Electronic Supplementary Material (ESI) for New Journal of Chemistry. This journal is © The Royal Society of Chemistry and the Centre National de la Recherche Scientifique 2015

New Journal of Chemistry

Supporting Information To:

Efficient and selective azidation of *per-O*-acetylated sugars using ultrasound activation: Application to the one-pot synthesis of 1,2,3-triazole glycosides

Hamid Marzag,^{a,b†} Soukaina Alaoui,^{a,b†} Hella Amdouni,^a Anthony R. Martin,^a Khalid Bougrin*^b and Rachid Benhida*^a

^{*a*} Institut de Chimie de Nice UMR UNS-CNRS 7272, Université Nice Sophia Antipolis, Parc Valrose, 06108 Nice Cedex 2, France. <u>benhida@unice.fr</u>

^{*b*} Laboratoire de Chimie des Plantes et de Synthèse Organique et Bioorganique, URAC23, Université Mohammed V-Agdal, Faculté des Sciences B.P. 1014 Rabat, Morroco. <u>kbougrin@yahoo.fr</u>

Table of contents	
Synthetic procedures	2
Selected spectral data ¹ H, ¹³ C	3 - 28
Selected HRMS data	29- 41

Experimental section

General. All organic solvents were purchased from commercial sources and used as received or dried using standard procedures, unless otherwise stated. All chemicals were purchased from Aldrich, Merck or Alfa Aesar and used without further purification; thin layer chromatography (TLC) was performed on precoated Merck 60 GF254 silica gel plates and revealed by spraying (p-anisaldehyde or $H_2SO_4/EtOH$), and detection by means of UV light at 254 and 360 nm. ¹H and ¹³C NMR spectra were recorded on a Bruker Avance 200 MHz spectrometer. Mass spectra (ESI MS) were recorded on a Brucker (Daltonics Esquire 3000+). HRMS spectra were carried out on a ThermoFisher Q Exactive plus in ESI mode positive and negative depending on the compounds to identify. We use a pump syringe at a flow of 3ul/mn and with the mass spectrometer at a resolution of 140 000 at m/z 200 for best accuracy. The purity of compounds was further verified to be >95% by HPLC analysis using analytical columns Hypersil (C18 (ELITE), 4.6 mm x 250 mm) or Nucleosil (120-5C8 (HICHROM), 4.6 mm x 250 mm) with an isocratic elution of CH₃CN/H₂O, 90/10. The ultrasound-assisted reactions were carried out in a "Branson Bransonic® 5510 DTH UltraSonic Bath Cleaner", with a frequency of 40 kHz. The ultrasonic cleaner has a power consumption of 185W (399 × 371 × 401 mm) with liquid holding capacity of 9.5 L.

General procedure for the synthesis of azidoglycoside (2a-e). To a cold suspension of sodium azide (2 mmol) in dichloromethane (5 mL), sulfuryl chloride (1mmol) is added drop wise. After the completion of the addition the mixture is sonicated for few minutes, and then the acetylated sugar 1a-e (2 mmol) and Lewis acid catalyst (20 mol %) are added to the mixture. The reaction mixture is sonicated during 45 min. After the completion of the reaction (TLC monitoring), the mixture was diluted with dichloromethane and washed with a saturated aqueous solution of NaHCO₃. The organic layer was washed with water (2×10 mL), dried over MgSO₄, filtered and the solvent was removed under reduced pressure. The residue was subjected to purification by silica gel column chromatography [Cyclohexane-EtOAc (9:1)] to give the pure azidoglycoside 2a-e.

General procedure for one-pot synthesis of 1,2,3-triazolyl glycosides. To a cooled suspension of sodium azide (2 mmol) in dichloromethane (5 ml), sulfuryl chloride (1 mmol) is added drop wise. After the completion of the addition the mixture was sonicated at room temperature. The sugar derivative (2 mmol) and anhydrous FeCl₃ catalyst (20 mol %) were added and sonication continued. After reaction completion (TLC monitoring), the alkyne (4 mmol), CuI (4 mmol) and diisopropylethylamine (4 mmol) were added to the mixture and then left under sonication. After completion of the reaction (TLC monitoring), the mixture was diluted with dichloromethane and successively washed with a saturated solution of NH₄Cl and water (2×10 mL), dried over MgSO₄, filtered and concentrated under reduced pressure. The crude residue was purified by silica gel column chromatography (Cyclohexane-EtOAc 8:2 to 5:5) to afford the triazolyl glycosides **3**.

Figure S1. ¹H NMR (200 MHz) and ¹³C NMR (50 MHz) and HRMS spectra for compound 2c.

Figure S2. ¹H NMR (200 MHz) and ¹³C NMR (50 MHz) and HRMS spectra for compound 2d.

Figure S5. ¹H NMR (200 MHz) and ¹³C NMR (50 MHz) and HRMS spectra for compound 3c.

Figure S6. ¹H NMR (200 MHz) and ¹³C NMR (50 MHz) and HRMS spectra for compound 3d.

Figure S7. ¹H NMR (200 MHz) and ¹³C NMR (50 MHz) and HRMS spectra for compound 3e.

Figure S8. ¹H NMR (200 MHz) and ¹³C NMR (50 MHz) and HRMS spectra for compound 3f.

SA--MN3TT.10.fid 5.94 5.52 5.52 5.47 5.43 5.43 5.33 $\begin{array}{c} 4.88\\ 4.85\\ 4.51\\ 4.51\\ 4.55\\ 4.45\\ 4.45\\ 4.45\\ 4.45\\ 4.45\\ 4.45\\ 4.45\\ 4.22\\ 5.23\\ 3.33\\$ 5.11 5.06 5.01 4.90 5.32 18.40 3.04 ± 77 - 57 ۲ 4 44 ${}^{\mathsf{h}}{}^{\mathsf{h}} \stackrel{\mathsf{h}}{\longrightarrow} {}^{\mathsf{h}}$ 0.99 1.00 1.01 1.00 1.09 1.03 6.05 4.33).5 10.0 9.5 9.0 8.5 8.0 7.5 7.0 6.5 6.0 5.5 4.5 4.0 3.5 3.0 2.5 2.0 1.5 1.0 0.5 0.0 5.0 ppm

Figure S9. ¹H NMR (200 MHz) and ¹³C NMR (50 MHz) and HRMS spectra for compound 3g.

SA MN3TT.10.fid	7170.61 7170.36 169.98 169.34				-85.34 77.16 CDCI3 75.29 -75.29 -72.57 -72.57 -70.07 -60.28 -62.59 -61.53	-20.87 -20.83 -20.81 -20.73 -20.27
	11					
Kin Kanada Kalana ka Kalana	ni/winishi (darabalanishi	Wind and a state of the	WIRTHING AND AND A ROLLING AND	nyisiyan mariyi muu yaday		generalistikasi ang sa ang ang ang ang ang ang ang ang ang an
190 180	0 170 160	150 140	130 120 110	100 90 ppm	80 70 60 50	40 30 20 10 (

Figure S10. ¹H NMR (200 MHz) and ¹³C NMR (50 MHz) and HRMS spectra for compound 3h.

Figure S11. ¹H NMR (200 MHz) and ¹³C NMR (50 MHz) and HRMS spectra for compound 3i.

SA14.20.fid SA14 (DMSO)																ee-qe-					
	r170.10	-170.02 -169.89	169.20	¹ 168.88 —159.84		-139.55	-128.32			95.73		-83.81 73.97	70.88	-68.90 F	-67./1 -62.68 -61.42	-60.87 39.52 DM	r20.59	20.46	-20.35 -20.29 -19.90	14.12	
																		I			
			h							1		ı	1								
aylarlanindaunitudilan	hanna labhailtean	wide with	native lines	hidi in the state	rivilianation	in standard	modulhau	netulnişter	milandright	nhhaiapayA	kel verhineri	Winner	wheel	AUNIA TIPO	Will Have Bally	ward he	Hanni V Mula	anita in a share	ANTAN	hasinhanik	Nyladon'nyillaydaa
210 20	0 190	<mark>18</mark> 0	170	160	150	140	130	120	110	100 ppm	90	80	70	60	50	40	30	20	10	0	-10

Figure S12. ¹H NMR (200 MHz) and ¹³C NMR (50 MHz) and HRMS spectra for compound 3j.

Figure S12. ¹H NMR (200 MHz) and ¹³C NMR (50 MHz) and HRMS spectra for compound 3k.

HRMS data

3c

