Electronic Supplementary Material (ESI) for New Journal of Chemistry. This journal is © The Royal Society of Chemistry and the Centre National de la Recherche Scientifique 2015

# **Supplementary Material**

# A novel example of double reactivity by either photochemical [2+2] or thermal additions of an ionic organic supramolecular assembly

## Alexander Briceño,<sup>a\*</sup> Dayana Leal,<sup>a,b</sup> and Graciela Diaz de Delgado,<sup>b</sup>

<sup>a</sup> Instituto Venezolano de Investigaciones Científicas, (IVIC), Apartado 21827, Caracas, 1020-A, Venezuela. Laboratorio de Síntesis y Caracterización de Nuevos Materiales, Centro de Química. <sup>b</sup> Universidad de Los Andes (ULA), Facultad de Ciencias, Departamento de Química, Laboratorio de Cristalografía, Apartado 40, La Hechicera, Mérida 5251, Venezuela.

### \*Corresponding author: Alexander Briceño; abriceno@ivic.gob.ve

### 1. List of Figures

**Figure S1.** (a) Monitoring the photoreaction of **1** by FT-IR at different UV-irradiation time periods. (b) Comparison of the FT-IR spectra of **1** before and after the photoreaction for 24 h, respectively.

**Figure S2. (a)** Comparison of the <sup>1</sup>H NMR spectra in DMSO-D<sub>6</sub> obtained from the photoreaction of compound **1** after irradiation for 48 h and the mixture after a second grinding-irradiation step (additional UV-irradiation for 1 day).

**Figure S3.** (a) Monitoring structural changes of the photoreaction of **1** by Powder X-Ray Diffraction at different UV-irradiation time periods.

**Figure S4**. Thermal analyses TGA/DSC of **1** heated at 190 °C for 30 min and cool down at 100 °C and heated until 600 °C.

**Figure S5**. FT-IR spectrum of **1** fresh heated in the solid state upon nitrogen atmosphere at 190 °C for 30 min

**Figure S6.** Comparison of the <sup>1</sup>H NMR spectra of compound **1** in DMSO-D<sub>6</sub> after UV irradiation for 2 days at 254 nm and after heating under hydrothermal conditions at 140 and 190 °C for 2 days, showing the isomerisation of *rctt* to *rtct*-isomer. (b) The <sup>1</sup>H NMR spectrum of  $[(rctt-H_2Cbtc^{2-})(Im^+)_2]$ : (2) in DMSO-D<sub>6</sub> after heating under hydrothermal conditions at 120 °C for 2 days.

**Figure S7**. The <sup>1</sup>H NMR spectrum of compound **1** in DMSO-D<sub>6</sub> after UV irradiation for 2 days at 254 nm and heated under hydrothermal conditions at 120 °C for 2 days, showing the isomerisation of *rctt* to *rcct* and *rtct*-isomers together with the products of the thermal ring cleavage (Maleic and Fumaric acid) and traces of hydroamination product.

**Figure S1. Figure S1.** (a) Monitoring the photoreaction of **1** by FT-IR at different UVirradiation time periods. (b) Comparison of the FT-IR spectra of **1** before (blue) and after the photoreaction for 24 h (red), respectively.



**(b)** 

**Figure S2.** Comparison of the <sup>1</sup>H NMR spectra obtained from the photoreaction of compound **1** after irradiation for 48 h and the mixture after a second grinding-irradiation step (additional UV-irradiation for 1 day).



**Figure S3.** (a) Monitoring structural changes of the photoreaction of 1 by X-Ray Powder Diffraction at different UV-irradiation time periods.



**Figure S4**. Thermal analyses TGA/DSC of **1** heated at 190 °C for 30 min and cool down at 100 °C and heated until 600 °C.



**Figure S5**. FT-IR spectrum of **1** fresh heated in the solid state upon nitrogen atmosphere at 190 °C for 30 min



**Figure S6.** (a) Comparison of the <sup>1</sup>H NMR spectra of compound **1** in DMSO after UV irradiation for 2 days at 254 nm and after heating under hydrothermal conditions at 140 and 190 °C for 2 days, showing the isomerisation of *rctt* to *rtct*-isomer. (b)



**Figure S7**. The <sup>1</sup>H NMR spectrum of compound **1** in DMSO-D<sub>6</sub> after UV irradiation for 2 days at 254 nm and heated under hydrothermal conditions at 120 °C for 2 days, showing the isomerisation of *rctt* to *rcct* and *rtct*-isomers together with the products of the thermal ring cleavage (Maleic and Fumaric acid) and traces of hydroamination product.

