Tuning the size and morphology of zeolitic imidazolate

framework-8 in a membrane dispersion reactor

Liangliang Dong^a, Chunfang Zhang^a, Jin Gu^a, Yuping Sun^a, Yunxiang Bai,*^a Mingqing Chen,*^a and Youyi Xu^b

^aThe Key Laboratory of Food Colloids and Biotechnology, Ministry of Education,

School of Chemical and Material Engineering, Jiangnan University, Wuxi 214122,

Jiangsu, China

^bMOE Key Laboratory of Macromolecule Synthesis and Functionalization,

Department of Polymer Science and Engineering, Zhejiang

University, Hangzhou 310027, P. R. China

^{*} Corresponding author: E-mail address: <u>baisir223@163.com</u>, Fax: +86-510-85917763; Tel: +86 510-85917090;E-mail:<u>mqchen@jiangnan.edu.cn</u>,Fax:+86-510-85917763;Tel:+ 86-510-85917019.

Characterization

Scanning electron micrographs of PES ultfiltration membranes and as-synthesized ZIF-8 were taken with HitachiS4800scanningelectron microscope (SEM) instrument. X-ray power spectra were recorded using a Bruker D8-Advance diffractometer with Cu-Ka radiation. Each XRD pattern was acquired from 3° to 45° at a rate of 1°/min. Nitrogen physisorption isotherms were measured at 77 K on an automatic volumetric adsorption apparatus (ASAP 2020). Dynamic light scattering (DLS) measurements were performed on ALV/DLS/SLS-5022F.

Figure S1. SEM image of the surface of PES membrane. The pore size and thickness of the PES ultfiltration membrane: 25 nm.

_	pressure			
	Sample	BET Surface Area	Langmuir Surface	t-Plot micropore
_		(m^2/g)	Area (m ² /g)	volume (cm ³ /g)
	T 0.02	883	1142	0.40
	T 0.04	966	1252	0.43
	T 0.06	1365	1790	0.61
	T 0.08	1146	1473	0.51

Tab.S1 BET of as-synthesized ZIF-8 prepared by MDR method under different trans-membrane pressure.

Fig. S2 Size distribution of as-synthesized ZIF-8 prepared by MDR method under different trans-membrane pressure

Table S2 Hydrodynamic radius and hydrodynamic radius distribution of as-synthesized ZIF-8 prepared by MDR method under different trans-membrane pressure

Sample	hydrodynamic radius /nm	hydrodynamic radius		
		distribution		
T 0.02	92.00	1.132		
T 0.04	108.50	0.878		
T 0.06	79.80	0.365		
T 0.08	98.29	0.696		

The size distribution of as-synthesized ZIF-8 under different trans-membrane pressure was shown in Fig. S2 and Table S2. The nanocrystal dispersions were filtered through 0.45 μ m syring filters before dynamic light scattering (DLS) measurements. Hydrodynamic radius distributions of ZIF-8 decreased initially and then increased with the increase of trans-membrane pressure. Only at the transmembrane pressure of 0.06 MPa, ZIF-8 particles with small crystal size (~79.8 nm) and narrow size distribution (hydrodynamic radius distribution was about 0.36) was obtained. Although T 0.02 had small crystal size (~92 nm), it had broad size distribution (hydrodynamic radius distribution was about 1.1).

Fig. S3 XRD patterns of as-synthesized ZIF-8 prepared by MDR method under the transmembrane pressure of 0.06 MPa

Fig. S4 SEM images of as-synthesized ZIF-8 prepared by MDR method under the transmembrane pressure of 0.06MPa: (a) without stirring (b) gentle stirring (c) vigorous stirring

Table 35 BET of 1 0.00 1 0.00 (a) without stirling (b) genue stirling (c) vigorous stirling				
BET Surface Area	Langmuir Surface Area	t-Plot micropore		
(m^{2}/g)	(m^2/g)	volume (cm ³ /g)		
947	1222	0.42		
1365	1790	0.61		
58	81	0.02		
	BET Surface Area (m ² /g) 947 1365 58	I 0.00 I 0.00 (a) without stirling (b) genue stirling (c)BET Surface AreaLangmuir Surface Area (m^2/g) (m^2/g) 9471222136517905881		

Table S3 BET of T 0.06 T 0.06 (a) without stirring (b) gentle stirring (c) vigorous stirring

Fig. S5 Size distribution of as-synthesized ZIF-8 prepared by MDR method under the transmembrane pressure of 0.06Mpa

Table S4 Hydrodynamic radius and hydrodynamic ra	adius distribution of T 0.06 (a) without stirring
(b) gentle stirring (c) y	vigorous stirring

	(b) gentie stifting (c) vigorous stifting	8
	hydrodynamic radius/nm	hydrodynamic radius
		distribution
a	122.50	0.898
b	79.80	0.365
с	11.47	1.556

DLS (Fig. S5 and Table S4) showed that there was broader hydrodynamic radius distribution of ZIF-8 with vigorous stirring than others. The ZIF-8 samples with gentle stirring had the smallest hydrodynamic radius (79.80) and narrow hydrodynamic radius distribution (0.36).