New Journal of Chemistry

ELECTRONIC SUPPLEMENTARY INFORMATION

Are fancy acidic or neutral ligands really needed for synergism in ionic liquids? A comparative study of lanthanoids extraction in CHCl³ and an ionic liquid.

Maria Atanassova,^{a, c,d}* Vanya Kurteva,^b Lubomir Lubenov^b, Sabi Varbanov^b, Isabelle Billard^{c,d}

^aUniversity of Chemical Technology and Metallurgy, Department of General and Inorganic Chemistry, 8 Kliment Okhridski blvd., 1756 Sofia, Bulgaria

E-mail: ma@uctm.edu

^bInstitute of Organic Chemistry with Centre of Phytochemistry, Bulgarian Academy of Sciences, Block 9, Acad. G. Bonchev street, BG 1113, Sofia, Bulgaria ^cUniversity of Grenoble Alpes, F-38000 Grenoble, France

^dCNRS, LEPMI, UMR 5279, F-38000 Grenoble, France

1. Synthesis and characterization of HL.

The pyrazolone derivative, 3-methyl-1-phenyl-4-(4-phenylbenzoyl)-pyrazol-5-one (**HL**) [1], was obtained according to an adapted literature procedure [2] in excellent yield. Shortly, 3-methyl-1 phenyl-1H-pyrazol-5-one (8.7 g, 50 mmol) was dissolved in dry dioxane (60 ml) under gentle heating. Ca(OH) $_2$ (7.4 g, 100 mmol) was added and the mixture was stirred at room temperature for 0.5 h. 4-Phenylbenzoyl chloride (6.5 ml, 50 mmol) was then added and the mixture was refluxed with stirring for 2 h. The reaction mixture was cooled to room temperature and poured into 10 % aq. HCl (250 ml). The solid phase formed was filtered off, washed with water, dried on air, and recrystallized from ethanol/acetone to give pure product in 86-94 % yield. Second recrystallization from ethanol afforded the analytically pure compound: 71-76 % yield; m. p. 151.1-151.5 \degree C; R_f 0.51 (MeOH:CH₂Cl₂ 5:95). The NMR spectra were initially recorded in chloroform-d₃ as 0.01 M solutions. However, the proton spectrum of the ligand showed overlapped signal for 5 aromatic protons. Also, four protons appeared as a sharp singlet due to non-first order spectrum. This pattern made the assignment of the signals impossible. So, the spectra were recorded in benzene- d_6 , where the most part of the protons give separate and well defined signals. The full assignment was accomplished by analysing the interactions in 2D experiments. For simplicity, the nuclei of C_6H_4 unit of biphenyl are assigned as 'and those of Ph part as "; Ph means N-Ph. 1 H NMR (CDCl₃, DRX 250) 2.223 (s, 3H, C*H3*), 7.343 (ddt, 1H, J 1.2, 6.8, 8.1, Ar C*H*), 7.444-7.561 (m, 5H Ar C*H*), 7.699 (dd, 2H, J 1.6, 6.8, Ar C*H*), 7.778 (s, 4H, Ar C*H*, non-first order spectrum), 7.935 (dd, 2H, J 1.2, 8.7, Ar C*H*), 10.595 (bs, 1H, O*H*); ¹³C NMR (CDCl3, DRX 250) 16.05 (*C*H3), 103.67 (*C*q), 120.78 (2 x *C*H), 126.68 (*C*H), 127.07 (2 x *C*H), 127.26 (2 x *C*H), 128.22 (*C*H), 128.67 (2 x *C*H), 129.01 (2 x *C*H), 129.14 (2 x *C*H), 136.24 (*C*q), 137.32 (*C*q), 139.89 (*C*q), 144.86 (*C*q), 147.87 (*C*q), 161.69 (*C*q), 191.41 (*C*=O); ¹H NMR (benzene-d6, II+ 600) 1.977 (s, 3H, C*H3*), 6.972 (tt, 1H, J 1.0, 7.4, C*H*-4 of Ph), 7.138-7.221 (m, 5H, C*H*-3 and C*H*-5 of Ph and C*H*-3", C*H*-4" and C*H*-5" of biPh), 7.339 (dd, 2H, J 1.7, 8.3, C*H*-3' and C*H*-5' of biPh), 7.381 (dd, 2H, J 1.4, 8.4, C*H*-2" and C*H*-6" of biPh), 7.465 (dd, 2H, J 1.8, 8.3, C*H*-2' and C*H*-6' of biPh), 8.212 (dd, 2H, J 1.1, 8.7, C*H*-2 and C*H*-6 of Ph), 12.237 (bs, 1H, OH); ¹³C NMR (benzene-d₆, II+ 600) 15.85 (CH₃), 103.86 (C_q-4), 120.08 (CH-2) and *C*H-6 of Ph), 126.04 (*C*H- 4 of Ph), 126.74 (*C*H-3' and *C*H-5' of biPh), 127.20 (*C*H-4" of biPh), 128.00 (*C*H-2" and *C*H-6" of biPh), 128.84 (*C*H-3 and *C*H-5 of Ph or *C*H-3" and *C*H-5" of biPh), 128.86 (*C*H-3 and *C*H-5 of Ph or *C*H-3" and *C*H-5" of biPh), 129.01 (*C*H-2' and *C*H-6' of biPh),

135.94 (*C*q-1' of biPh), 138.03 (*C*q-1 of Ph), 139.92 (*C*q-1" of biPh), 144.56 (*C*q-4' of biPh), 147.17 (*C*q-3), 162.74 (*C*q-5), 189.99 (*C*=O); COSY cross peaks: 6.972/7.138-7.221, 7.138-7.221/7.381, 7.138-7.221/8.212, 7.339/7.465; NOESY cross peaks: 1.977/7.465, 6.972/7.138-7.221, 7.138- 7.221/7.381, 7.138-7.221/8.212, 7.339/7.465; HSQC cross peaks: 1.977/15.85, 6.972/126.04, 7.138- 7.221/127.20, 7.138-7.221/128.84, 7.138-7.221/128.86, 7.339/126.74, 7.381/128.00, 7.465/129.01, 8.212/120.08; HMBC cross peaks: 1.977/103.86, 1.977/147.17, 6.972/120.08, 6.972/128.84 or 128.86, 6.972/138.03, 7.138-7.221/120.08, 7.138-7.221/128.00, 7.138-7.221/128.84, 7.138- 7.221/128.86, 7.138-7.221/138.03, 7.138-7.221/139.92, 7.339/126.74, 7.339/135.94, 7.339/139.92, 7.381/127.20, 7.381/128.00, 7.381/144.56, 7.465/129.01, 7.465/144.56, 7.465/189.99, 8.212/120.08, 8.212/126.04, 8.212/138.03 (weak).

References

[1] F. Manetti, M. Magnani, D. Castagnolo, L. Passalacqua, M. Botta, F. Corelli, M. Saddi, D. Deidda, A. De Logu, Ligand-based virtual screening, parallel solution-phase and microwave-assisted synthesis as tools to identify and synthesize new inhibitors of Mycobacterium tuberculosis, ChemMedChem 1 (2006) 973-989.

[2] B.S. Jensen, The synthesis of 1-phenyl-3-methyl-4-acyl-pyrazolones-5, Acta Chim. Scand. 13 (1959) 1668-1670.

Figure S1. ¹H NMR spectrum of 3-methyl-1-phenyl-4-(4-phenylbenzoyl)-pyrazol-5-one in CDCl₃.

Figure S2. ¹³C (down) and DEPT (up) NMR spectra of 3-methyl-1-phenyl-4-(4-phenylbenzoyl) pyrazol-5-one in $CDCl₃$.

Figure S3.¹H NMR spectrum of 3-methyl-1-phenyl-4-(4-phenylbenzoyl)-pyrazol-5-one in CDCl₃ (up) and in benzene- d_6 (down).

Figure S4. ¹H NMR spectrum of 3-methyl-1-phenyl-4-(4-phenylbenzoyl)-pyrazol-5-one in benzene $d_{6.}$

Figure S5. ¹³C (down) and DEPT (up) NMR spectra of 3-methyl-1-phenyl-4-(4-phenylbenzoyl) pyrazol-5-one in benzene- d_{6} .

Figure S6. ¹H-¹H COSY NMR spectrum of 3-methyl-1-phenyl-4-(4-phenylbenzoyl)-pyrazol-5-one in benzene- d_6 .

Figure S7. ¹H-¹H NOESY NMR spectrum of 3-methyl-1-phenyl-4-(4-phenylbenzoyl)-pyrazol-5-one in benzene- d_6 .

Figure S8. ¹H-¹³C HSQC NMR spectrum of 3-methyl-1-phenyl-4-(4-phenylbenzoyl)-pyrazol-5-one in benzene- d_{6} .

Figure S9. ¹H-¹³C HMBC NMR spectrum of 3-methyl-1-phenyl-4-(4-phenylbenzoyl)-pyrazol-5-one in benzene- d_6 .

2. **NMR** characterization of S _{*IV}*</sub>

The quality of 5,11,17,23-tetra-tert-butyl-25,26,27,28-tetrakis-(dimethylphosphinoylmethoxy)calix^[4]arene (S_{IV}) has been checked by ¹H NMR in CDCl₃ (250) MHz, 25^oC): δ = 1.074(s, 36H, (CH₃)₃C), 1.532(d, ²J_{HP}=12.9 Hz, 24H, (CH₃)₂P=O), 3.268(d, ²J_{HH}=13.0 Hz, 4H, Ar-C*H*₂-Ar), 4.688(d, ²J_{HP}=1.3 Hz, 8H, C*H*₂P=O), 4.836(d, ²J_{HH}=13.0 Hz, 4H, Ar-CH₂-Ar), 6.800(s, 8H, Ar-*H*) and in CD₃OD (250MHz, 25^oC): δ = 1.001(s, 36H, (CH₃)₃C), 1.527(d, ²J_{HP}=13.1 Hz, 24H, (CH₃)₂P=O), 3.292(d, ²J_{HH}=13.2 Hz, 4H, Ar-CH₂-Ar), 4.668(d, ²J_{HP}=1.3 Hz, 8H, CH₂P=O), 4.780(d, ²J_{HH}=13.2 Hz, 4H, Ar-CH₂-Ar), 6.891(s, 8H, Ar-*H*).

3. Solvent extraction of Ln3+ ions with HL alone using CHCl³ as diluent.

Figure S10. Log D_L vs. pH for the extraction of lanthanoid(III) ions with HL alone at [HL]= 1.5×10⁻ 2 mol/dm³ in CHCl₃.

Log D_L vs. [HL] for the extraction of lanthanoid(III) ions with HL alone in CHCl₃: La, pH=4.30; Nd, pH=4.25; Eu, pH=4.25; Ho, pH=4.15; Lu, pH=3.95.

Ln	CHCl3			
	HL alone	$HL + S_{IV}$	HL alone	$HL + S_{\mathrm{IV}}$
La	1.02(0.979)	0.968 0.989	0.983 (0.974)	0.996
Nd	0.972(0.986)	0.993	nd	nd
Eu	1.00(0.973)	0.986	nd	nd
Ho	0.968(0.989)	9.984	nd	nd
Lu	0.990(0.989)		nd	nd

Table S1: Ratio and linear correlation coefficient (in parenthesis) between experimental and fitted D values.

nd: not determined.

4. Interaction between HL and SIV

All samples were prepared separately by using pure dry compounds dissolved in deuterochloroform (Deutero GmbH). The spectra of the individual ligand (HL) and the synergist S_V , assigned as S in figures captions for simplicity, were recorded in 0.05 M concentrations. The spectra of the 2:1 and 1:1 S:HL mixtures were recorded as 0.05 M calixarene and 0.025 M and 0.05 M pyrazolone, respectively.

Figure S11. ¹H spectra of (from bottom to top): S, S:HL 2:1, S:HL 1:1 and HL in CDCl₃.

Figure S12. The aromatic area of ¹H spectra of (from bottom to top): S, S:HL 2:1, S:HL 1:1 and HL in CDCl₃.

Figure S13.¹³C spectra of (from bottom to top): S, S:HL 2:1, S:HL 1:1 and HL in CDCl₃.

Figure S14. The aromatic area of ¹³C spectra of (from bottom to top): S, S:HL 2:1, S:HL 1:1 and HL in CDCl₃.

Figure S15. ³¹P spectra of S (bottom), S:HL 2:1 (middle) and S:HL 1:1 (top) in CDCl₃.

Figure S16.¹H-¹H ROESY spectrum of S:HL 2:1 mixture in CDCl₃.

Figure S17. ¹H-¹H ROESY spectrum of S:HL 1:1 mixture in CDCl₃.

Figure S18. Log $D_{L,S}$ vs. pH for the extraction of lanthanoid(III) ions with mixtures HL–S_{IV} at [HL]= 1.5×10^{-2} mol/dm³ and [S_{IV}]= 6×10^{-4} mol/dm³ in CHCl₃.

Figure S19. Log $D_{L,S}$ vs. log[HL] for the extraction of lanthanoid(III) ions with mixtures HL–S_{IV} at $[S_{IV}]$ = 6×10⁻⁴mol/dm³ in CHCl₃: La, pH=3.20; Nd, pH=2.95; Eu, pH=2.95; Ho, pH=2.75; Lu, pH=2.70.

Figure S20. Log $D_{L,S}$ vs. log[S_{IV}] for the extraction of lanthanoid(III) ions with mixtures HL–S_{IV} at [HL]= 1.5×10⁻²mol/dm³ in CHCl₃: La, pH=3.15; Nd, pH=2.95; Eu, pH=2.95; Ho, pH=2.80; Lu, pH=2.65.

5. Solvent extraction of La^{3+} ion with HL and S_V used alone and IL as diluent.

Figure S21. Log*D*^L vs. pH for the extraction of lanthanum(III) ions with HL alone in IL. Log D_L vs. [HL] for the extraction of lanthanum(III) ions with HL alone in IL at pH=2.80. Log D_L vs. [S] for the extraction of lanthanum(III) ions with S alone in IL at pH=3.05.

Figure S22. Log D_L vs. pH for the extraction of Ln(III) ions with [HL]=7x10⁻³ mol/dm³ alone in IL.

Fig. 23. Log $D_{L,S}$ vs. pH for La(III) extraction with mixture HL–S_{IV} at $[S_{IV}]$ =7x10⁻⁴mol/dm³ in IL. Log $D_{L,S}$ vs. log[HL] for La(III) ions extraction with mixture HL–S_{IV} at [S_{IV}]=7x10⁻⁴mol/dm³ and pH=2.20.

Log $D_{L,S}$ vs. log[S_{IV}] for La(III) ions extraction with mixture HL–S_{IV} at [HL]=5x10⁻³ mol/dm³ and pH=2.20.

Figure S24. Chemical structures of 3-methyl-1-phenyl-4-(4-trifluoromethylbenzoyl)-pyrazol-5-one, HL' and partially substituted calix[4]arenes by phosphinoyl functions.