Supporting Information

Carbon nanotubes/S-N-C hybrid nanomaterials as a bifunctional electrocatalyst for oxygen reduction and evolution reactions

Qing Zhu,† Ling Lin,† Yi-Fan Jiang, Xiao Xie, Cheng-Zong Yuan, An-Wu Xu*

Division of Nanomaterials and Chemistry, Hefei National Laboratory for Physical Sciences at Microscale, University of Science and Technology of China, Hefei 230026, China

*Correspondence to: anwuxu@ustc.edu.cn

Fig. S1 (a) SEM image of MWCNTs. (b) FTIR spectra of the MWCNTs@S-N-C and MWCNTs@Pth precursor. (c) HRTEM image of MWCNTs@S-N-C.

The number of electrons transferred (n) during ORR was calculated by Koutecky-Levich equation at various electrode potentials and is given below:^{1,2}

$$\frac{1}{J} = \frac{1}{J_L} + \frac{1}{J_K} = \frac{1}{B\omega^{1/2}} + \frac{1}{J_K}$$
$$B = 0.62nFC_0 D_0^{2/3} v^{-1/6}$$

where J_k is the kinetics current density, J is the measured ORR current density, n represents the number of electrons transferred per oxygen molecule, F is the Faraday constant (F= 96485 C mol⁻¹), C₀ is the bulk concentration of O₂ (=1.2 × 10⁻⁶ mol cm⁻³), D₀ is the diffusion coefficient of O₂ in the KOH electrolyte (=1.9 × 10⁻⁵ cm² s⁻¹), v is the kinetic viscosity of the electrolyte (=0.01 cm² s⁻¹), and ω is the angular velocity of the disk (ω =2 π N , N is the linear rotation speed).

Fig. S2 (a) Cyclic voltammograms of MWCNTs@S-C catalyst and (b) RDE voltammograms of the MWCNTs@S-C catalysts at 1600 rpm in 0.1 M KOH saturated with O₂ gas.

Fig. S3 (a) linear sweep voltammograms of MWCNTs@S-C catalyst; (b) Oxygen evolution CV curves of MWCNTs@S-N-C and IrO₂ measured in a 0.1 M KOH with a sweep rate of 10 mV s⁻¹ and (c) Tafel plots of the IrO₂, MWCNTs@S-C and MWCNTs@S-N-C hybrids derived by the mass-transport correction of corresponding RDE data.

Fig. S4 (a) linear sweep voltammograms of the MWCNTs catalysts at 1600 rpm in 0.1 M KOH saturated with O_2 gas. (b) Oxygen evolution curves of MWCNTs in a 0.1 M KOH with a sweep rate of 10 mV s⁻¹.

Fig. S5 Comparison of the Raman spectra: (a) MWCNTs@S-N-C and (b) MWCNTs@S-C.

Fig. S6 Chronopotentiometric response at a constant current density of 10.0 mA cm⁻² of MWCNTs@S-N-C at 1600 rpm in 0.1 M KOH (E = 0.7 V vs. Ag/AgCl).

References:

(1) S. Y. Wang, D. S. Yu, L. M. Dai, D. W. Chang and J. B. Baek, Polyelectrolyte-Functionalized Graphene as Metal-Free Electrocatalysts for Oxygen Reduction. *ACS Nano*, 2011, **5**, 6202–6209.

(2) S. B. Yang, X. L. Feng, X. C. Wang and K. Mullen, Graphene-Based Carbon Nitride Nanosheets as Efficient Metal-Free Electrocatalysts for Oxygen Reduction Reactions. *Angew. Chem. Int. Ed.*, 2011, **50**, 5339–5343.