Electronic Supplementary Material (ESI) for New Journal of Chemistry. This journal is © The Royal Society of Chemistry and the Centre National de la Recherche Scientifique 2015

Electronic Supplementary Information

Study on the solution and solid-state fluorescence of novel BF₂ complexes with (Z)-2-[phenanthridin-6(5H)-ylidene]-1-phenylethanone and its derivatives as ligands

Ding-Er Wu, Xiao-Lin Lu and Min Xia* Department of Chemistry, Zhejiang Sci-Tech University, Hangzhou 310018, P. R. China E-mail: xiamin@zstu.edu.cn

Materials and measurements

All the reagents used were analytically pure and some chemicals were further purified by recrystallization or distillation. Melting points were determined by an OptiMelt automated melting point system. The ¹H (400 MHz) and ¹³C NMR (100 MHz) spectra were obtained on a Bruker Avance II DMX400 spectrometer using DMSO-d₆ or CDCl₃ as the solvent and tetramethylsilane as the internal standard. The absorption spectra were measured on a Shimadzu UV 2501(PC)S UV–Vis spectrometer and the fluorescence spectra were acquired on a Perkin-Elmer LS55 spectrophotometer. The quantum yields were measured with quinine sulfate in 0.1M sulfuric acid (Φ_f =0.55) or fluorescein in 0.1N NaOH (Φ_f =0.91) as the reference. The mass spectra were determined on a HP 1110 mass spectrometer under 70 eV attack. The single crystal structure was determined on a Bruker Gemini Ultra diffractometer with a CCD counter.

Computational details

The gas-phase geometries of the concerned compounds were optimized without any symmetry restrictions in singlet ground state using the density functional theory (DFT) method at the B3LYP level. The 6–31G (d, p) basis set was selected for all the elements. The vibration frequency calculations were performed to ensure that the optimized geometries represented the global minima on the ground-state potential energy surface. All the calculations were carried out with the Gaussian 09 program package ^[1] in aid of the GaussView visualization program. The solvent effect was executed with the polarizable continuum model (PCM).

X-ray structure analysis

A single crystal of compounds grown in CH₂Cl₂/hexane mixture was selected for the X-ray analysis. The diffraction data were collected on a Bruker CCD area-detector diffractometer equipped with a graphite-

monochromated Mo*Ka* radiation (λ =0.71073 Å) at 293 K for C₄ and 171 K for C₆, respectively. The unit cell parameters were determined from a least-squares refinement of the setting angles. The structure was solved by direct methods and refined on *F*² by the full-matrix least-squares methods with SHELXS-97. The refinement was carried out by full-matrix least squares method on the positional and anisotropic temperature parameters of the non-hydrogen atoms using SHELXL-97. All H atoms were placed in the idealized positions and constrained to ride on their parent atoms. Crystal data for compound C₁: C₂₁H₁₄BF₂NO, *M_w* = 345.14, orthogonal, P n a 2₁, *a* = 30.2538(15) Å, *b* = 7.7754(4) Å, *c* = 13.4669(8) Å, *a* = 90°, *β* = 90°, *γ* = 90°, *D_{calcud}* = 1.447 g cm⁻³, *Z* = 8, *F(000)* = 1424, μ = 0.104 mm⁻¹, 3032 reflections were corrected, 2473 unique, *R_I* = 0.0372, *wR*₂ = 0.0848; compound C₄: C₂₃H₁₉BF₂N₂O, *M_w* = 388.21, orthogonal, P b c a, *a* = 7.2856(5) Å, *b* = 18.1056(11) Å, *c* = 27.2497(14) Å, *a* = 90°, *β* = 90°, *γ* = 90°, *γ* = 90°, *P* = 0.0414, *wR*₂ = 0.1039; Crystallographic data for compound C₁ (CCDC 1011524), C₄ (CCDC 1010944) were deposited at CCDC center and can be obtained free of charge from The Cambridge Crystallographic Data Centre via www.ccdc.cam.ac. uk/data request/cif.

General procedure for the synthesis of ligand L_{1-5}

At room temperature and nitrogen atmosphere, 6-methylphenanthridine (10 mmol) in dried THF (20 mL) was added drop wise to a solution of *n*-BuLi (15 mmol) in dried THF (20 mL). After the solution was stirred for 30 min, ethyl benzoate (10 mmol) in dried THF (20 ml) was added drop wise to the above solution. The mixture was heated at 45 °C for 12-24h and the precipitate was collected by filtration. After washed with dried THF for 2-3 times, the solid was dissolved in 1% HCl aqueous solution. The solution was extracted by ether (3×10 mL) and the combined organic layer was dried over anhydrous Na₂SO₄. After removal of solvent, the residue was purified on a silica-gel column chromatography with ethyl acetate/hexane as eluent.

Ligand L₁: dark yellow solid, 73% yield; m.p. 127.5-128.7 °C; ¹H NMR(400 MHz, CDCl₃) δ 6.82(s, 1H), 7.31(t, *J*=7.6 Hz, 1H), 7.46-7.53(m, 5H), 7.60(t, *J*=7.6 Hz, 1H), 7.71(t, *J*=7.6 Hz, 1H), 8.05(m, 2H), 8.22(d, *J*=8 Hz, 1H), 8.27(d, *J*=8.0 Hz, 1H), 8.35(d, *J*=8.0 Hz, 1H), 15.88(s, 1H); ¹³C NMR(100 MHz, CDCl₃) δ 84.85, 117.51, 119.73, 121.97, 123.03, 123.63, 124.43, 126.66, 127.48, 128.06, 129.26, 130.32, 131.36, 131.47, 134.01, 140.42, 152.15, 186.15; EI-MS (70 eV) *m/z*(%) 297(M⁺, 100), 268(55), 220(35), 192(35), 165(30), 105(60), 77(48).

Ligand L₂: light yellow solid, 41% yield; m.p. 206.4-207.4°C; ¹H NMR(400 MHz, CDCl₃) δ 3.95(s, 3H), 6.76(s, 1H), 7.31(t, *J*=8 Hz, 1H), 7.44-7.52(m, 2H), 7.57(t, *J*=7.6 Hz, 1H), 7.74(t, *J*=8 Hz, 1H), 8.06(d, *J*=8 Hz, 2H), 8.12(d, *J*=8 Hz, 2H), 8.18(d, *J*=8 Hz, 1H), 8.22(d, *J*=8 Hz, 1H), 8.31(d, *J*=8 Hz, 1H), 15.94(s, 1H); ¹³C NMR(100 MHz, CDCl₃) δ 52.19, 85.69, 118.31, 120.46, 122.47, 122.61, 123.90, 124.07, 125.19, 126.80, 128.11, 129.62, 129.90, 131.60, 132.18, 132.22, 134.37, 144.57, 153.14, 166.71, 185.26; EI-MS (70 eV) *m/z*(%) 355(M⁺, 100), 326(47), 267(19), 220(50), 192(48), 165(57), 133(22), 104(27), 76(43).

Ligand L₃: yellow solid, 87% yield; m.p. 157.2-157.8°C; ¹H NMR(400 MHz, CDCl₃) δ 3.89(s, 3H), 6.77(s, 1H), 6.99(d, *J*=8Hz, 2H), 7.28(t, *J*=8Hz, 1H), 7.43(d, *J*=8Hz, 1H), 7.49(t, *J*=8Hz, 1H), 7.58(t, *J*=8Hz, 1H), 7.74(t, *J*=8Hz, 1H), 8/03(d, *J*=8Hz, 2H), 8.19(d, *J*=8Hz, 1H), 8.24(d, *J*=8Hz, 1H), 8.33(d, *J*=8Hz, 1H), 15.75(s, 1H); ¹³C NMR(100 MHz, CDCl₃) δ 55.3, 84.60, 113.47, 117.77, 119.96, 122.33, 122.42, 123.15, 124.33, 124.88, 127.86, 128.66, 129.67, 131.68, 131.93, 133.22, 134.64, 152.20, 161.69, 186.17; EI-MS (70 eV) *m/z*(%) 327(M⁺, 96), 312(11), 299(37), 220(22), 192(23), 165(28), 135(100), 107(14), 92(20), 77(30).

Ligand L₄: orange solid, 84% yield; m.p. 195.7-197.2 °C; ¹H NMR(400 MHz, CDCl₃) δ 3.06(s, 6H), 6.75(d, *J*= 8.4 Hz, 2H), 6.78(s, 1H), 7.24(t, *J*= 7.6 Hz, 1H), 7.39(d, *J*= 8 Hz, 1H), 7.45(t, *J*= 8 Hz, 1H), 7.56(t, *J*= 7.6 Hz, 1H), 7.71(t, *J*=8 Hz, 1H), 8.00(d, *J*=8.4 Hz, 2H), 8.15(d, *J*= 8Hz, 1H), 8.23(d, *J*=8.4 Hz, 1H), 8.30(d, *J*=8 Hz, 1H), 15.66(s, 1H); ¹³C NMR(100 MHz, CDCl₃) δ 40.04, 84.43, 117.54, 119.75, 122.30, 122.37, 122.69, 124.73, 124.78, 127.78, 128.08, 128.58, 129.58, 131.39, 131.88, 135.05, 151.53, 152.11, 186.58; EI-MS (70 eV) *m/z*(%) 340 (M⁺, 100), 312(15), 148(98), 121(73), 106(10), 77(13), 42(18).

Ligand L₅: brown solid, 93% yield; m.p. 207.5-208.4 °C; ¹H NMR(400 MHz, CDCl₃) δ 6.68(s, 1H), 7.31(t, *J*=8 Hz, 1H), 7.44(d, *J*=8 Hz, 1H), 7.51(t, *J*=8Hz, 1H), 7.57(t, *J*=8 Hz, 1H), 7.70(d, *J*=8 Hz, 2H), 7.76(t, *J*=8 Hz, 1H), 8.05(d, *J*=8 Hz, 2H), 8.18(d, *J*=8 Hz, 2H), 8.31(d, *J*=8 Hz, 1H), 15.92(s, 1H); ¹³C NMR(100 MHz, CDCl₃) δ 85.45, 113.50, 118.37, 118.71, 120.54, 122.52,122.67, 123.75, 124.24, 125.18, 127.31, 128.18, 129.99, 132.14, 132.22, 132.40, 134.02, 144.37, 153.28, 183.68; EI-MS (70 eV) *m/z*(%) 322(M⁺, 100), 293(52), 220(44), 192(34), 165(39), 130(16), 102(22).

Scheme S5 Synthetic route to complex C₁₋₅

At room temperature, triethylamine (3 mmol) in dried CH_2Cl_2 (1 mL) was added drop wise to a solution of ligand (1 mmol) in dried CH_2Cl_2 (2 mL). After the solution was stirred for 30 min, boron trifluoride etherate (8 mmol) in dried CH_2Cl_2 (2 mL) was added drop wise. The mixture was stirred overnight and the solvent was removed on a rotating evaporator. The residue was purified by a flash column chromatography on silica gel with dried CH_2Cl_2 as eluent.

Complex C₁: bright greenish solid, 63% yield; m.p. 201.9-206.3 °C; ¹H NMR(400 MHz, CDCl₃) δ 7.29(s, 1H), 7.49-7.57(m, 3H), 7.63(t, *J*=8 Hz, 1H), 7.76(t, *J*=8 Hz, 2H), 7.96(t, *J*=8 Hz, 1H), 8.13(d, *J*=7.6 Hz, 2H), 8.49(d, *J*=7.6 Hz, 2H), 8.58(d, *J*=8.4 Hz, 1H), 8.85(d, *J*=8.4 Hz, 1H); EI-MS (70 eV) *m/z*(%) 345(M⁺, 100), 324(15), 280(47), 166(13), 159(13), 105 (12), 77(25).

Complex C₂: bright yellow solid, 81% yield; m.p. 272.8-273.5°C; ¹H NMR(400 MHz, CDCl₃) δ 3.97(s, 3H), 7.30(s, 1H), 7.63(t, *J*=8 Hz, 1H), 7.74(d, *J*=8 Hz, 1H), 7.79(d, *J*=8 Hz, 1H), 7.98(t, *J*=8 Hz, 1H), 8.09(q, *J*=8 Hz, 4H), 8.50(t, *J*=8 Hz, 2H), 8.59(d, *J*=8 Hz, 1H), 8.84(d, *J*=8 Hz, 1H); EI-MS (70 eV) *m/z*(%) 403(M⁺-1, 100), 338(35), 278(18), 186(15), 139(13).

Complex C₃: bright yellow solid, 76% yield; m.p. 252.5-253.5°C; ¹H NMR(400 MHz, CDCl₃) δ 3.87(s, 1H), 6.94(d, *J*=8Hz, 2H), 7.14(s, 1H), 7.57(t, *J*=8Hz, 1H), 7.71(td, *J*₁=4Hz, *J*₂=8Hz, 2H), 7.91(t, *J*=8Hz, 1H), 8.04(d, *J*=8Hz, 2H), 8.44(dd, *J*₁=4Hz, *J*₂=8Hz, 2H), 8.53(d, *J*=8Hz, 1H), 8.77(d, *J*=8Hz, 1H); EI-MS (70 eV) *m/z*(%) 375(M⁺, 100), 360(11), 331(10), 310(37), 267(21), 135(16), 77(14).

Complex C₄: dark red solid, 72% yield; m.p. 237.2-238.4 °C; ¹H NMR(400 MHz, CDCl₃) δ 3.08(s, 6H), 6.72(d, *J*=8 Hz, 2H), 7.09(s,1H), 7.52(t, *J*=8 Hz, 1H), 7.68(m, 2H), 7.89(t, *J*=8 Hz, 1H), 8.02(d, *J*=8.8 Hz, 2H), 8.43(t, *J*=8.8 Hz, 2H), 8.52(d, *J*=8.8 Hz, 1H), 8.73(d, *J*=8.8 Hz, 1H); EI-MS (70 eV) *m/z*(%) 388(M⁺, 100), 325(30), 194(15), 148(17), 106(8), 77(6).

Complex C₅: orange solid, 75% yield; m.p. 270.8-271.6 °C; ¹H NMR(400 MHz, CDCl₃) δ 7.30(s, 1H), 7.64(d, *J*=8 Hz, 2H), 7.69(t, *J*=8 Hz, 1H), 7.80(q, *J*=8 Hz, 2H), 8.02(t, *J*=8 Hz, 1H), 8.09(d, *J*= 8Hz, 2H), 8.52(d, *J*=8 Hz, 2H), 8.62(d, *J*=8 Hz, 1H), 8.84(d, *J*=8 Hz, 1H); EI-MS (70 eV) *m/z*(%) 370(M⁺, 100), 305(47), 102(11).

General procedure for the synthesis of Complex C_6

(1) Synthetic procedure for precursor P_1

At room temperature and nitrogen flow, the mixture of 2-bromo-6-methylphenanthridine (11 mmol) and [4-(1,2,2- triphenylvinyl)pheny])boronic acid (10 mmol) in dioxane/H₂O (4:1, V/V, 20 mL) were injected into the mixture of Pd(PPh₃)₄ (0.5 mmol) and K₂CO₃ (12 mmol) in dioxane/H₂O (4:1, V/V, 5 mL). The resulted suspension was heated at 80°C and stirred for 12h. After cooling to the room temperature, the mixture was filtrated. The filtrate was diluted with water (50 mL) and extracted with ethyl acetate (10×3 mL). The combined organic layers were dried over anhydrous Na₂SO₄ and then evaporated under the reduced pressure. The residue was purified on a silica-gel column chromatography with petroleum ether/CH₂Cl₂ (3:1) as the eluent.

White solid, 88% yield; m.p. 207.5-208.7°C; ¹H NMR(400 MHz, CDCl₃) δ 3.06(s, 3H), 7.06-7.19(m, 17H), 7.54(d, *J*=8 Hz, 2H), 7.71(t, *J*=8 Hz, 1H), 7.84(t, *J*=8 Hz, 1H), 7.90(dd, *J*_{*I*}=8.8 Hz, *J*₂=1.6 Hz, 1H), 8.11(d, *J*=8.8 Hz, 1H), 8.22(d, *J*= 8 Hz, 1H), 8.67(m, 2H); ¹³C NMR(100 MHz, CDCl₃) δ 23.99, 119.96, 122.37, 123.90, 126.14, 126.48, 126.55, 126.58, 126.63, 126.65, 127.67, 127.75, 127.80, 127.84, 129.66, 130.44, 131.37, 131.38, 131.45, 131.99, 132.65, 138.64, 138.69, 140.48, 141.34, 143.14, 143.73, 143.75, 143.76, 158.76; EI-MS (70 eV) *m/z*(%) 523(M⁺, 100), 446(10), 253(18), 222(10), 165(11).

(2) Synthetic procedure for ligand L_6

At room temperature and nitrogen atmosphere, 6-methyl-2-[4-(1,2,2-triphenylvinyl)phenyl]phenanthridine (10 mmol) in dried THF (20 mL) was added drop wise to a solution of *n*-BuLi (15 mmol) in dried THF (20 mL). After the solution was stirred for 30 min, ethyl benzoate (10 mmol) in dried THF (20 ml) was added drop wise to the above solution. The mixture was heated at 45 °C for 24h and the precipitate was collected by filtration. After

washed with dried THF for 2-3 times, the solid was dissolved in 1% HCl aqueous solution. The solution was extracted by ether (3×10 mL) and the combined organic layer was dried over anhydrous Na₂SO₄. After removal of solvent, the residue was purified on a silica-gel column chromatography with ethyl acetate/hexane (6:1) as eluent. Orange solid, 54% yield; m.p. 254.1-256.4°C; ¹H NMR(400 MHz, CDCl₃) δ 6.84(s, 1H), 7.05-7.15(m, 17H), 7.44(d, *J*=8.0 Hz, 2H), 7.49(d, *J*=6.3 Hz, 4H), 7.61(t, *J*=7.6 Hz, 1H), 7.71(d, *J*=8.1 Hz, 1H), 7.78(t, *J*=7.6 Hz, 1H), 8.05(d, *J*=3.6 Hz, 2H), 8.28(d, *J*=8.2, Hz, 1H), 8.36(s, 1H), 8.42(d, *J*=8.2 Hz, 1H), 15.95(s, 1H); ¹³C NMR (100 MHz, CDCl₃): δ 85.43, 118.42, 120.40, 120.44, 122.60, 124.41, 125.16, 126.06, 126.46, 126.52, 126.55, 126.89, 127.63, 127.71, 127.81, 128.11, 128.34, 128.74, 130.66, 131.32, 131.34, 131.40, 131.94, 131.96, 132.05, 133.86, 135.96, 138.07, 140.36, 140.62, 141.23, 142.94, 143.65, 143.68, 143.70, 152.42, 186.85; EI-MS (70 eV) *m/z*(%) 628(M⁺ +1, 100), 607(21), 570(15), 457(17), 371(23), 327(23), 284(38), 256(27), 239(17), 194(20), 177(12), 133(19).

(3) Synthetic procedure for complex C_6

At room temperature, triethylamine (3 mmol) in dried CH₂Cl₂ (1 mL) was added drop wise to a solution of (*Z*)-1-phenyl-2-(2-(4-(1,2,2-triphenylvinyl)phenyl)phenanthridin-6(5H)-ylidene)ethanone (1 mmol) in dried CH₂Cl₂ (2 mL). After the solution was stirred for 30 min, boron trifluoride etherate (8 mmol) in dried CH₂Cl₂ (2 mL) was added drop wise. The mixture was stirred overnight and the solvent was removed on a rotating evaporator. The residue was purified by a flash column chromatography on silica gel with dried CH₂Cl₂ as eluent. Yellow solid, 67% yield; m.p. 325.7-327.3°C; ¹H NMR(400 MHz, CDCl₃) δ 7.07-7.20(m, 17H), 7.52(m, 5H), 7.78(t, *J*=7.6 Hz, 1H), 7.92(d, *J*=8.8 Hz, 1H), 7.97(d, *J*=8 Hz, 1H), 8.13(d, *J*= 7.2 Hz, 2H), 8.51(d, *J*=8.4 Hz, 1H), 8.61(s, 1H), 8.66(d, *J*=8 Hz, 1H), 8.83(d, *J*=8.8 Hz, 1H); EI-MS (70 eV) *m/z*(%) 676(M⁺ +1, 52), 663(40), 628(100), 610(30), 568(22), 536(20), 503(18), 355(24), 284(96), 256(55), 239(20), 133(21).

References

M. J. Frisch, G. W. Trucks, H. B. Schlegel, G. E. Scuseria, M. A. Robb, J. R. Cheeseman, G. Scalmani, V. Barone, B. Mennucci, G. A. Petersson, H. Nakatsuji, M. Caricato, X. Li, H. P. Hratchian, A. F. Izmaylov, J. Bloino, G. Zheng, J. L. Sonnenberg, M. Hada, M. Ehara, K. Toyota, R. Fukuda, J. Hasegawa, M. Ishida, T. Nakajima, Y. Honda, O. Kitao, H. Nakai, T. Vreven, J. A. Montgomery, Jr., J. E. Peralta, F. Ogliaro, M. Bearpark, J. J. Heyd, E. Brothers, K. N. Kudin, V. N. Staroverov, R. Kobayashi, J. Normand, K. Raghavachari, A. Rendell, J. C. Burant, S. S. Iyengar, J. Tomasi, M. Cossi, N. Rega, J. M. Millam, M. Klene, J. E. Knox, J. B. Cross, V. Bakken, C. Adamo, J. Jaramillo, R. Gomperts, R. E. Stratmann, O. Yazyev, A. J. Austin, R. Cammi, C. Pomelli, J. W. Ochterski, R. L. Martin, K. Morokuma, V. G. Zakrzewski, G. A. Voth, P. Salvador, J. J. Dannenberg, S. Dapprich, A. D. Daniels, O. Farkas, J. B. Foresman, J. V. Ortiz, J. Cioslowski, D. J. Fox, Gaussian 09, Revision A.02, Gaussian, Inc., Wallingford CT, 2009.

Fig. S1 Normalized absorption (solid line) and emission spectra (dot line) of C₁ in different solvents (*green*: hexane; *red*: CH₂Cl₂; *blue*: DMSO)

Fig. S2 Normalized absorption (solid line) and emission spectra (dot line) of C₂ in different solvents (*green*: hexane; *red*: CH₂Cl₂; *blue*: DMSO)

Fig. S3 Normalized absorption (solid line) and emission spectra (dot line) of C₃ in different solvents (*green*: hexane; *red*: CH₂Cl₂; *blue*: DMSO)

Fig. S4 Normalized absorption (solid line) and emission spectra (dot line) of C₅ in different solvents (*green*: hexane; *red*: CH₂Cl₂; *blue*: DMSO)

Fig. S5 Normalized absorption spectra of C₄ in different solvents

Fig. S6 Normalized absorption spectra of C₆ in different solvents

Fig. S7 The simulated geometry of C_6

Fig. S8 Powder XRD diagrams of C₁-C₅ solids

Fig. S9 OREPT drawing of C_1 molecule

Fig. S10 π - π and C-H···F interactions in different molecule pairs of C₁

Fig. S11 OREPT drawing of C_4 molecule

Fig. S12 π - π and C-H··· π interactions among C₄ molecules

Fig. S13 C-H \cdots F interactions among C₄ molecules

