Electronic Supplementary Material (ESI) for New Journal of Chemistry. This journal is © The Royal Society of Chemistry and the Centre National de la Recherche Scientifique 2015

Electronic Supplementary Material (ESI) for New Journal of Chemistry

One Pot Vinylogous Aldol Addition of β,γ-Unsaturated Esters Under Mild Conditions

İsmail Akçok, and Ali Çağır*

Department of Chemistry, Faculty of Science, İzmir Institute of Technology, Urla 35430, İzmir, Turkey. E-mail: alicagir@iyte.edu.tr

Table of Contents

General Methods	S2
Example Procedure	S2
Analytical Data of Obtained Compounds	S3
¹ H and ¹³ C Spectra of Obtained Compounds	S6

General Methods

Reagents were commercial grade and were used as supplied. Tetrahydrofuran (THF) was dried by MBraun-SPS-Solvent Purification System. Reactions were monitored by TLC using Merck TLC plates (Silicagel 60 F 254). Chromatographic separations and isolations were performed using Fluka 70–230 mesh silica gel. Solvents, required for SiO₂ column chromatography, were commercial grade and were used as supplied. ¹H NMR and ¹³C NMR data were recorded on a Varian 400-NMR (400 MHz) spectrometer. Chemical shifts for ¹H NMR and ¹³C NMR are reported in δ (ppm). CDCl₃ peaks were used as reference in ¹H NMR (7.26 ppm) and ¹³C NMR (77.16 ppm), respectively. MestReNova NMR Processing Software was used for processing NMR spectra.

Example Procedure

To a two-necked round bottom flask 34 mg of Ag₂CO₃ (0.125 mmol, 0.5 eq.) and 4 mL of anhydrous DMF were added. The mixture was stirred about 20 minutes at room temperature and cooled down to 0 °C in ice bath. Then 28 µL of methyl 3butenoate (0.25 mmol, 1 eq.) and 33 µL of TMSCI (0.25 mmol, 1 eq.) were added sequentially. After solution was stirred 1 h at 0 °C, 72 µL 1-naphthaldehyde (0.5 mmol, 2 eq.) and 0.25 mL TBAF (1.0 in M THF) (0.25 mmol, 1 eq.) were added to the reaction mixture. The final mixture was allowed to warm to room temperature and stirred for 24 h. The mixture was poured into 30 mL of water and extracted with Et₂O (3x40 mL). Combined organic phase was dried over MgSO₄ and excess solvent was removed under reduced pressure. Purification of crude product on SiO₂ column (1:6 \rightarrow 1:4; EtOAc:Hexane) furnished 48 mg of (*E*)-methyl 5-hydroxy-5-(naphthalen-5-yl)pent-2enoate (**8**) as yellow oil in 75% yield.

Analytical Data of Obtained Compounds Methyl (*E*)-5-hydroxy-5-(naphthalen-1-yl)pent-2-enoate (8)

Light yellow oil Yield: 75% R_f: 0.46 (1:2, EtOAc:Hexane)

¹H NMR (400 MHz, CDCl₃) δ 8.03 (d, J = 9.2 Hz, 1H), 7.88 (d, J = 7.5 Hz, 1H), 7.79 (d, J = 8.2 Hz, 1H), 7.65 (d, J = 7.1 Hz, 1H), 7.56 – 7.44 (m, 3H), 7.10 (dt, J = 15.6, and 7.2 Hz, 1H), 5.94 (dt, J = 15.7, and 1.5, 1H), 5.58 (dd, J = 8.2, and 4.1 Hz, 1H), 3.71 (s, 3H), 2.88 – 2.79 (m, 1H), 2.79 – 2.69 (m, 1H), 2.44 (s, 1H).

¹³C NMR (100 MHz, CDCl₃) δ 166.91, 145.58, 139.09, 133.91, 130.14,
129.15, 128.41, 126.37, 125.77, 125.56, 123.51, 122.97, 122.82, 69.89, 51.63,
40.98.

HRMS: [M+Na]⁺: C₁₆H₁₆O₃ found as: 279.0986 (Calculated for [M+Na]⁺: 279.0997)

Methyl (E)-5-hydroxy-5-phenylpent-2-enoate (15)

¹H NMR (400 MHz, CDCl₃) δ 7.40 – 7.27 (m, 5H), 7.00 – 6.91 (m, 1H), 5.93 – 5.85 (m, 1H), 4.81 (s, 1H), 3.70 (s, 3H), 2.69 – 2.59 (m, 2H), 2.18 (s, 1H). ¹³C NMR (100 MHz, CDCl₃) δ 166.85, 145.11, 143.53, 128.76, 128.07,

125.85,123.72, 73.22, 51.64, 41.96.

Methyl (E)-5-(2,4-dimethoxyphenyl)-5-hydroxypent-2-enoate (16)

¹H NMR (400 MHz, CDCl₃) δ 7.20 (d, J = 8.1 Hz, 1H), 7.05 – 6.94 (m, 1H), 6.50 – 6.44 (m, 2H), 5.89 (dd, J = 15.7, and 0.9 Hz, 1H), 4.96 (s, 1H), 3.82 (s, 3H), 3.80 (s, 3H), 3.71 (s, 3H), 2.67 (t, J = 7.2 Hz, 2H), 2.53 (s, 1H).

¹³C NMR (101 MHz CDCl₃) δ 166.99, 160.47, 157.60, 146.15, 127.53, 123.83, 123.06, 104.30, 98.86, 69.43, 55.53, 55.45, 51.57, 40.28.

HRMS: [M+Na]⁺: C₁₄H₁₈NaO₅ found as: 289.1010 (Calculated for [M+Na]⁺: 289.1052)

Methyl (E)-5-(3-bromophenyl)-5-hydroxypent-2-enoate (17)

¹H NMR (400 MHz, CDCl₃) δ 7.51 (t, J = 1.5 Hz, 1H), 7.41 (dt, J = 7.5, and 1.6 Hz, 1H), 7.28 – 7.18 (m, 2H), 6.99 – 6.89 (m, 1H), 5.89 (dt, J = 15.7, and 1.3 Hz, 1H), 4.81 –4.75 (m, 1H), 3.71 (s, 3H), 2.63 – 2.57 (m, 2H), 2.44 (s, 1H).

13C NMR (100 MHz, CDCl3) δ 166.83, 145.89, 144.63, 131.02, 130.28, 128.95, 124.48, 123.96, 122.83, 72.40, 51.71, 41.92.

Methyl (2E,6E)-5-hydroxy-7-phenylhepta-2,6-dienoate (1	9)
--	----

	Light yellow oil
OMe	Yield: 28%
C ₁₄ H ₁₆ O ₃	R _f : 0.53 (1:2, EtOAc:Hexane)
19	

¹H-NMR (400 MHz, CDCl₃) δ 7.38 (d, J = 7.3 Hz, 2H), 7.32 (t, J = 7.6 Hz, 2H), 7.28 – 7.26 (m, 1H), 7.01 (dt, J = 14.9, and 7.3 Hz, 1H), 6.62 (d, J = 15.9 Hz, 1H), 6.23 (dd, J = 15.9, and 6.6 Hz, 1H), 5.95 (d, J = 15.7 Hz, 1H), 4.45 (q, J = 6.4 Hz, 1H), 3.73 (s, 3H), 2.55 (t, J = 6.9 Hz, 2H), 1.93 (s, 1H).

(NMR data matches with the literature study. Gazaille, J. A.; Sammakia, T., The Vinylogous Aldol Reaction of Unsaturated Esters and Enolizable Aldehydes Using the Novel Lewis Acid Aluminum Tris(2,6-di-2-naphthylphenoxide). Organic Letters 2012, 14 (11), 2678-2681.)

Methyl (E)-5-hydroxy-5-(naphthalen-2-yl)pent-2-enoate (20)

Light yellow oil Yield: 69% R_f: 0.43 (1:2, EtOAc:Hexane)

20

¹H NMR (400 MHz, CDCl₃) δ 7.85 – 7.79 (m, 3H), 7.76 (s, 1H), 7.48 (dt, J =4.8, and 3.3 Hz, 2H), 7.44 (dd, J = 8.6, and 1.6 Hz, 1H), 7.03 – 6.93 (m, 1H), 5.89 (d, J = 15.7 Hz, 1H), 4.95 – 4.88 (m, 1H), 3.68 (s, 3H), 2.79 – 2.59 (m, 3H).

¹³C NMR (100 MHz, CDCl₃) δ 166.89, 145.20, 140.94, 133.30, 133.12, 128.51, 128.06, 127.77, 126.33, 126.08, 124.63, 123.84, 123.56, 73.15, 51.58, 41.79.

HRMS: [M+Na]⁺: C₁₆H₁₆NaO₃ found as: 279.0971 (Calculated for [M+Na]+:279.0997)

Benzyl (E)-5-hydroxy-5-(naphthalen-1-yl)pent-2-enoate (27)

Light yellow oil OH Yield: 51% R_f: 0.4 (1:2, EtOAc-Hexane) C22H20O3 27

¹H NMR (400 MHz, CDCl₃) δ 8.02 (d, J = 7.5 Hz, 1H), 7.89 (d, J = 7.2 Hz, 1H), 7.80 (d, J = 8.2 Hz, 1H), 7.66 (d, J = 7.0 Hz, 1H), 7.56 – 7.45 (m, 3H), 7.40 – 7.31 (m, 5H), 7.20 – 7.11 (m, 1H), 6.00 (dd, J = 15.7, and 0.7 Hz, 1H), 5.58 (dd, J = 8.0, and 3.8 Hz, 1H), 5.17 (s, 2H), 2.87 - 2.69 (m, 2H), 2.45 (s, 1H).

¹³C NMR (100 MHz, CDCl₃) δ 164.76, 150.97, 150.70, 138.31, 137.89, 133.34, 133.14, 128.54, 128.17, 127.81, 126.42, 126.23, 125.12, 124.97, 124.22, 124.07, 120.94, 120.46, 110.13, 76.24, 35.50, 31.24.

¹H and ¹³C NMR Spectra of Obtained Compounds

¹H spectrum of Methyl (E)-5-hydroxy-5-(naphthalen-1-yl)pent-2-enoate (8)

S-8

¹H spectrum of Methyl (E)-5-hydroxy-5-phenylpent-2-enoate (15)

¹H spectrum of Methyl (E)-5-(3-bromophenyl)-5-hydroxypent-2-enoate (17)

¹H spectrum of Methyl (2E,6E)-5-hydroxy-7-phenylhepta-2,6-dienoate (19)

¹H spectrum of Methyl (E)-5-hydroxy-5-(naphthalen-2-yl)pent-2-enoate (20)

S-20

S-21