Supporting information

One-step Synthesis of SnO₂ Nanoparticles-Loaded Graphitic Carbon Nitride Hybrids and their Application in Thermal Decomposition of Ammonium Perchlorate

Qi Li,¹ Yi He,^{2,*} and Rufang Peng,^{1,*}

¹(State Key Laboratory Cultivation Base for Non-metal Composites and Functional Materials, Southwest University of Science and Technology, Mianyang 621010, P, R, China) ²(College of Defence Technology, southwest University of Science and Technology, Mianyang, 621010, P, R, China)

^{*} Corresponding author; Fax: 86-816-2419011; Tel.: 86-816-2419011 Email: pengrufang@swust.edu.cn yhe2014@126.com

Fig. S1 Preparation schematic of micron $SnO_2NPs/g-C_3N_4$ of the one-step for calcination

Raw materials of dicyandiamide (DCDA) and high-purity SnO_2 nanoparticles were mixed uniformly, than the mixed powder was placed in the tubular furnace atmosphere and calcined at 550 °C under argon flow with a heating rate of 2.5 K •min⁻¹.

Fig. S2 The N₂ sorption-desorption isotherm of the bulk g-C₃N₄ (a), SnO₂NPs/g-C₃N₄
hybrids (b), hybrids 2 (prepared by molar ratios of 1:2 between SnO₂NPs and DCDA)
(c), hybrids 3(prepared by molar ratios of 1:4 between SnO₂NPs and DCDA) (d).

Fig. S3 DSC curves of pure AP and AP mixed with g-C₃N₄.

Fig. S4 (a) TGA-DTG curve of AP mixed with SnO₂-2DCDA, (b) SnO₂-4DCDA (the molar ratio between SnO₂NPs and (DCDA) equal 1:4 and 1:2, respectively.). (c) The N₂ sorption-desorption isotherm of the hybrids 2 (prepared by molar ratios of 1:2 between SnO₂NPs and DCDA) (c), hybrids 3 (prepared by molar ratios of 1:4 between SnO₂NPs and DCDA) (d).

Fig. S5 FT-IR spectra of crude g- C_3N_4 (red curve), treated g- C_3N_4 with HClO₄ (black

curve).

Fig. S6 Typical spin-adduct EPR of superoxide radicals

Fig. S6 exhibited the EPR of $SnO_2NPs/g-C_3N_4$, the obvious characterization peak is corresponded to the superoxide radicals.^{S1}

Fig. S7 (a) The TG curve of C_{60} . (b) DTA curves of compound 1 (SnO₂NPs/g-C₃N₄ : C_{60} : AP = 1 : 1 : 9, weight ratio) and compound 2 (SnO₂NPs/g-C₃N₄ : C_{60} : AP = 1 : 1.5 : 9).

As shown in Fig. S7, the TG curve of C_{60} confirmed that C_{60} is very stable before 450 °C. Interestingly, C_{60} is a kind of good substance for absorbing electrons and free radicals, so we designed the contrast experiment to verify the production of electron when $SnO_2NPs/g-C_3N_4$ was heat excitation. In the Fig. S6b, for compound 1, compared with the $SnO_2NPs/g-C_3N_4$ hybrids (352.2 °C), the addition of fullerene resulted in lagging of the decomposition temperature (361.6 °C). Meanwhile, for the compound 2, with the increase of fullerene weight, the lagging trend of decomposition temperature was increased. Above results confirmed that $SnO_2NPs/g-C_3N_4$ can product the electrons and holes under heat excitation.

[S1] Villamena, F, A.; Zweier, J, L. Antioxid. Redox Sign. 2004, 6, 619-629.