Supplementary Data

Fabrication of copper sulfide using a Cu-based metal organic framework for colorimetric determination and efficient removal of Hg²⁺ in aqueous solutions

Yuhao Xiong, Linjing Su, Haiguan Yang, Peng Zhang, Fanggui Ye*

Key Laboratory for the Chemistry and Molecular Engineering of Medicinal Resources

(Ministry of Education of China), College of Chemistry and Pharmaceutical Science

of Guangxi Normal University, Guilin 541004, China.

Catalyst	Substance	K _m /mM	V _{max} /10 ⁻⁸ M s ⁻¹
PCuS	TMB	0.029	29
	H_2O_2	0.15	16

Table S1. Michaelis-Menten constant (K_m) and maximum reaction rate (V_{max}) of the

oxidation reaction catalyzed by the PCuS.

Target added (µM)	Found (µM)	Recovery (%)	RSD (%)
5	5.4	108	5.4
15	14.8	93.6	2.8
30	30.2	100.7	4.2

Table S2. Determination results of Hg^{2+} in pond water sample.

Adsorbents	Maximum adsorption capacity (mg g ⁻¹)	Reference
Thiol-functionalization of HKUST-1	714.29	[22]
Porphyrin-functionalized $Fe_3O_4@SiO_2$	<10	[30]
Mesoporous silica spheres	<100	[31]
SBA-15-Ag	0.06	[32]
ZnS	2000	[33]
PCuS	2105	This work

Table S3. The comparison of the adsorption capacity of PCuS with other adsorbents.

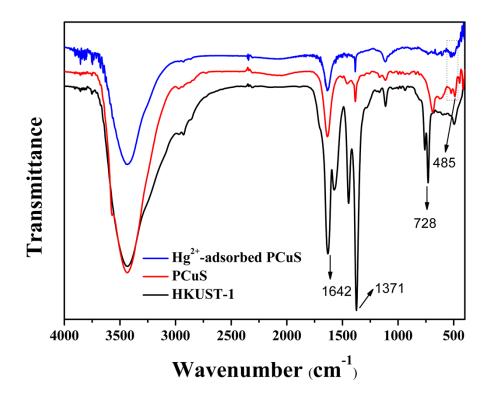


Fig. S1 FT-IR spectra of HKUST-1 and PCuS

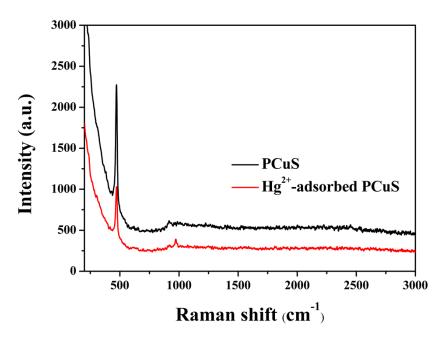


Fig. S2 Raman spectra for PCuS before and after Hg²⁺ sorption

Fig. S3 The EDS spectrum (a) and elemental mapping (b) of the PCuS.

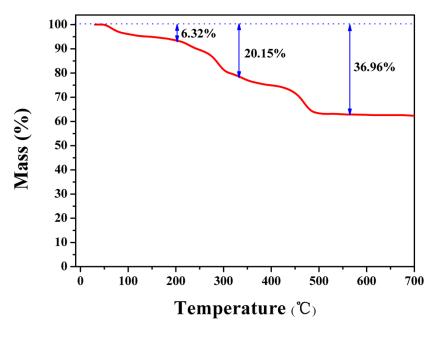


Fig. S4 TGA curve of the PCuS

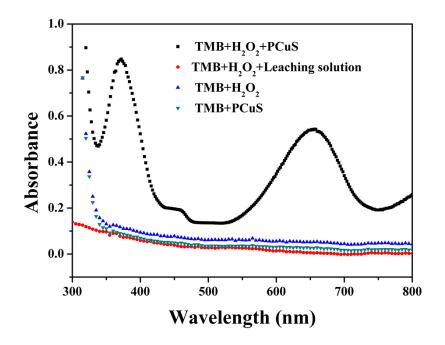


Fig. S5 UV–Vis spectra of TMB buffer solution containing H₂O₂/PCuS, H₂O₂/leaching solution,

 H_2O_2 and PCuS

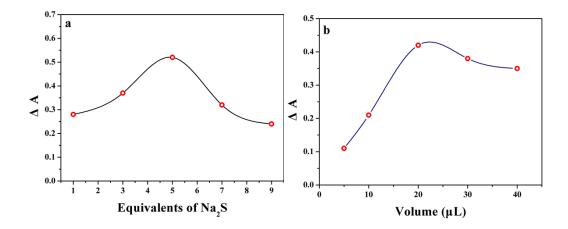


Fig. S6 Effects of the amounts of Na_2S used in the PCuS fabrication (a) and dosage of PCuS (b)

for Hg^{2+} detection

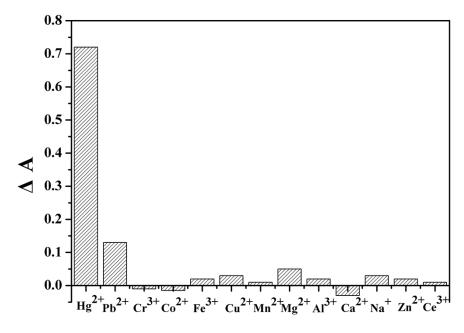


Fig. S7 Determination of the selectivity of Hg^{2+} detection

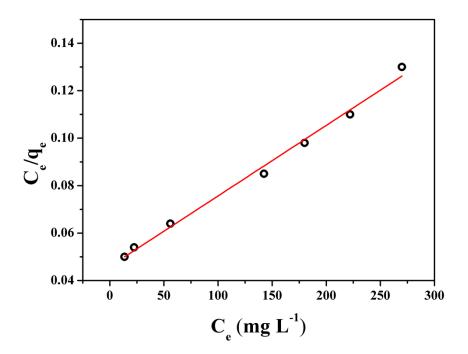


Fig. S8 The fitted adsorption isotherms of Hg^{2+} on PCuS by the Langmuir equation

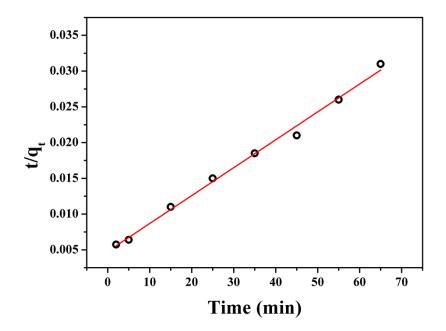


Fig. S9 Plots of pseudo-second-order kinetics for the adsorption of Hg^{2+} on PCuS