Electronic Supplementary Material (ESI) for New Journal of Chemistry. This journal is © The Royal Society of Chemistry and the Centre National de la Recherche Scientifique 2015

New Journal of Chemistry - Electronic Supplementary Information

Metal complexes with bis(2-pyridyl)diselenoethers: Structural chemistry and catalysis

Roberta Cargnelutti,^a Felipe Dornelles da Silva,^a Ulrich Abram^{*b} and Ernesto Schulz Lang,^{*a}

Crystal Data	1	2	3	4	5	6
Formula	$C_{11}H_{10}Cl_2CuN_2Se_2$	$C_{22}H_{20}Cu_4I_4N_4Se_4$	$C_{26}H_{28}Cl_2CuN_4Se_4$	$C_{13}H_{14}Cl_2CoN_2Se_2$	$C_{13}H_{14}Ag N_3O_3Se_2$	$C_{14}H_{16}Cl_2CuN_2Se_2$
$Fw (g mol^{-1})$	462.57	1418.02	846.83	846.83	526.06	504.65
$T(\mathbf{K})$	173(2)	173(2)	200(2)	200(2)	200(2)	173(2)
Crystal system	Orthorhombic	Triclinic	Triclinic	Monoclinic	Monoclinic	Orthorhombic
Space group	Pbca	P1	<i>P</i> 1	$P2_{1}/n$	P2/c	Pbca
a/Å	11.9328(10)	9.0860(2)	8.2538(10)	20.476(2)	9.7910(10)	10.2403(3)
$b/{ m \AA}$	12.2111(10)	9.1684(2)	8.7192(10)	8.5749(6)	4.4420(10)	11.4552(3)
$c/ m \AA$	18.6534(16)	10.5159(3)	11.6817(12)	21.202(2)	20.883(3)	14.8043(4)
$\alpha/^{o}$	90	70.960(10)	87.058(9)	90	90	90
β/°	90	88.276(10)	81.017(9)	115.735(8)	90.960	90
γ/°	90	77.370(10)	62.798(8)	90	90	90
$V/Å^3$	2718.0(4)	807.25(3)	738.35(14)	3353.4(6)	908.1(3)	1736.61(8)
Ζ	8	1	1	8	2	4
D_{calc} (g cm ⁻³)	2.261	2.917	1.905	1.925	1.924	1.930
μ (Mo K α) (mm ⁻¹)	7.337	10.954	5.874	5.674	5.130	5.751
λ/Å	0.71073	0.71073	0.71073	0.71073	0.71073	0.71073
F(000)	1768	644	411	1880	504	980
Collected reflns.	56282	11123	8469	18299	6289	27397
Unique reflns.	6021	7012	3933	6569	2433	3280
$\operatorname{GOF}(F^2)$	0.852	1.053	0.781	0.717	0.947	1.014
R_1^a	0.0203	0.0193	0.0357	0.0479	0.0572	0.0217
wR_2^b	0.0924	0.0475	0.1060	0.0512	0.1522	0.0515

Table S1. Crystallographic data and refinement parameters for	: 1-	-6 .
---	------	-------------

 ${}^{a}R_{1} = \sum^{IIFoI - IFcII} / \sum^{IFoI.} wR_{2} = \{\sum w(F_{o}^{2} - F_{c}^{2})^{2} / \sum w(F_{o}^{2})^{2}\}^{1/2}.$

Figure S1. ORTEP¹ view of the asymmetric unit of the compound $[CuCl_2(L1)]_n$ (1) with the thermal ellipsoids at 50% probability. Selected bond lengths [Å] and angles [°]: Cu(1)–N(1) = 2.0644(15), Cu(1)–Cl(2) = 2.2493(5), Cu(1)–Cl(1) = 2.2757(5), Se(1)–C(5) = 1.9080(17), Se(1)–C(6) = 1.9513(18), Se(2)–C(7) = 1.8997(17), Se(2) –C(6) = 1.9567(17), N(1)–Cu(1)–Cl(1) = 90.67(4), Cl(1)–Cu(1)–Cl(2) = 175.91 (2).

Figure S2. ORTEP¹ view of the asymmetric unit of the compound $[Cu_4I_4(L1)_2]$ (2) with the thermal ellipsoids at 50% probability. Selected bond distances [Å] and angles [°]: I(1)-Cu(2) = 2.5703(3), I(1)-Cu(1) = 2.6897(3), Cu(2)-N(2) = 2.0570(16), Cu(2)-Se(1) = 2.4240(3), I(2)-Cu(1) = 2.6890(3), Se(1)-C(5) = 1.9197(15), Cu(1)-N(1) = 2.0661(14), Cu(2)-I(1)-Cu(1) = 83.536(8), N(2)-Cu(2)-Se(1) = 110.29(4), N(2)-Cu(2)-I(1) = 118.35(5), Se(1)-Cu(2)-I(1) = 113.437(10), I(2)-Cu(1)-I(1) = 103.863(9).

¹ Farrujia, L.J. "ORTEP 3 Program for Ellipsoid of Crystal Structures" J. Appl. Cryst. 1997, 30.

Figure S3. ORTEP¹ view of the asymmetric unit of the compound $[CuCl_2(L2)_2]$ (**3**) with the thermal ellipsoids at 50% probability. Selected bond distances [Å] and angles [°]: Cu(1)–N(1) = 1.993(3), Cu(1)–Cl(1) = 2.2794(8), Cu(1)–Se(1) = 3.1289(3), N(1)–Cu(1)–Se(1) = 60.616(5), Cl(1)–Cu(1)–Se(1) = 91.491(6), N(1)–Cu(1)–Cl(1) = 91.18(8). Symmetry transformations used to generate equivalent atoms: (') 1–x, 1–y, 1–z.

Figure S4. ORTEP¹ view of the asymmetric unit of the compound $[CoCl_2(L2)]_n$ (4) with the thermal ellipsoids at 50% probability. Selected bond lengths [Å] and angles [°]: Co(1)–N(1) = 2.052(6), Co(1)–N(2) = 2.053(6), Co(1)–Cl(1) = 2.247(2), Co(1)–Cl(2) = 2.252(2), N(1)–Co(1)–N(2) = 111.3(3), N(1)–Co(1)–Cl(1) = 105.44(18), N(2)–Co(1)–Cl(1) = 110.99(18), N(1)–Co(1)–Cl(2) = 113.78(18), N(2)–Co(1)–Cl(2) = 108.39(17), Cl(1)–Co(1)–Cl(2) = 106.87(10).

Figure S5. ORTEP¹ view of the asymmetric unit of the compound $[Ag(L2)(NO_3)]_n$ (5) with the thermal ellipsoids at 50% probability. The NO₃⁻ ion exhibit positional disorder. Selected bond distances [Å] and angles [°]: Se(1)–Ag(1) = 2.7310(6), Ag(1)–N(1) = 2.321(4), Se(1)–C(5) = 1.921(4), Se(1)–C(6) = 1.973(4), N(1)–Ag(1)–Se(1) = 123.37(9), C(6)–Se(1)–Ag(1) = 104.02(11), C(5)–Se(1)–Ag(1) = 93.98(12).

Figure S6. ORTEP¹ view of the asymmetric unit of the compound $[CuCl_2(L3)]_n$ (6) with the thermal ellipsoids at 50% probability. Selected bond lengths [Å] and angles [°]: Cu(1)–N(1) = 1.9762(11), Cu(1)–Cl(1) = 2.2861(3), Cu(1)–Se(1) = 3.0628(1); N(1)–Cu(1)–Se(1) = 82.118(1), Cl(1)–Cu(1)–Se(1) = 117.576(1), N(1)–Cu(1)–Cl(1) = 88.94(3).

Figure S7. ¹H-NMR spectrum of Ligand (L1) in CDCl₃.

Figure S8. ¹³C-NMR spectrum of Ligand (L1) in CDCl₃.

Figure S12. ¹³C-NMR spectrum of Ligand (L3) in CDCl₃.

Figure S14. ¹³C-NMR spectrum of 9a in CDCl₃.

Figure S16. ¹³C-NMR spectrum of 9b in CDCl₃.

Figure S18.¹³C-NMR spectrum of 9c in CDCl₃.

Figure S20. FT-IR spectrum of $[(Py'Se)_2(C_3H_6)]$ (L2).

Figure S22. FT-IR spectrum of $[CuCl_2(L1)]_n(1)$.

Figure S23. FT-IR spectrum of $[Cu_4I_4(L1)_2]$ (2).

Figure S24. FT-IR spectrum of $[CuCl_2(L2)_2]$ (3).

Figure S25. FT-IR spectrum of $[CoCl_2(L2)]_n$ (4).

Figure S26. FT-IR spectrum of $[Ag(L2)(NO_3)]_n$ (5).

Figure S27. FT-IR spectrum of $[CuCl_2(L3)]_n$ (6).

Figure S28. ESI+ MS spectrum of $[CuCl_2(L1)]_n(1)$.

Figure S29. Expansion of the mass spectra for the compound $[CuCl_2(L1)]_n(1)$.

Figure S30. ESI+ MS spectrum of [CuCl₂(L2)₂] (**3**).

Figure S31. Expansion of the mass spectra for the compound [CuCl₂(L2)₂] (3).

Figure S32. ESI+ MS spectrum of $[CoCl_2(L2)]_n$ (4).

Figure S33. Expansion of the mass spectra for the compound $[CoCl_2(L2)]_n$ (4).

Figure S35. Expansion of the mass spectra for the compound $[Ag(L2)(NO_3)]_n$ (5).

Figure S36. ESI+ MS spectrum of $[CuCl_2(L3)]_n$ (6).

Figure S37. Expansion of the mass spectra for the compound $[CuCl_2(L3)]_n$ (6).