Electronic Supplementary Material (ESI) for New Journal of Chemistry. This journal is © The Royal Society of Chemistry and the Centre National de la Recherche Scientifique 2015

Supporting Information

Catalyst free C–N bond formation by the reaction of amines with diimides activation: Bulky guanidines

Ashim Baishya,^a Thota Peddarao,^a Milan Kr. Barman,^a and Sharanappa Nembenna^{*a}

^aSchool of Chemical Sciences, National Institute of Science Education and Research (NISER) Bhubaneswar, India 751005

Corresponding Author: Sharanappa Nembenna

Fax: +91-674-2302436; Tel.: +91-674-2304126 Email: <u>snembenna@niser.ac.in</u>

Contents

1)	Table S1. Addition of amines to arylcarbodiimides
2)	Copy of ¹ H and ¹³ C{ ¹ H} NMR spectra of compounds-(1a - 28a) S4 -S31
3)	Table S2. Crystal data and structural refinement of 1a, 22a, & 27a S32
4)	Table S3. Selected bond lengths and bond angles S33

Table S1. Addition of amines to bulky aromatic carbodiimides:

Entry	amines	R , R '	Temp. (°C)/ Time (h)	Product	Yield ^a %
1		$2,6-Me_2C_6H_3$	r.t. / 1	1 a	99
		$2,4,6-Me_3C_6H_2$	r.t. / 1.33	2a	86
	ŇH	$2,6-Et_2C_6H_3$	r.t. / 1.5	3 a	86
	~	$2,6-{}^{i}\mathrm{Pr}_{2}\mathrm{C}_{6}\mathrm{H}_{3}$	r.t./ 2	4 a	99
		4^{-i} PrC ₆ H ₄	r.t. / 1.16	5 a	84
		4- ^t ButC ₆ H ₄	r.t./ 1	6a	96
2		$2,6-Me_2C_6H_3$	r.t./ 2	7a	97
		$2,4,6-Me_3C_6H_2$	r.t./ 2	8 a	99
	ЛН	$2,6-Et_2C_6H_3$	r.t./ 2	9a	99
		$2,6^{-i}\mathrm{Pr}_{2}\mathrm{C}_{6}\mathrm{H}_{3}$	r.t./ 2	10a	99
		4- ⁱ PrC ₆ H ₄	r.t./ 1	11a	77
		4- ^t ButC ₆ H ₄	r.t./ 1	12a	89
3		$2,6-Me_2C_6H_3$	r.t./ 1.83	13 a	99
		$2,4,6-Me_3C_6H_2$	r.t. / 2	14a	98
	Ó NH	$2,6-Et_2C_6H_3$	r.t./ 2	15a	89
		$2,6-Pr_2C_6H_3$	r.t. / 2	16a	99
		4 - ⁱ PrC_6H_4	r.t./ 2	17a	99
		4- ^t ButC ₆ H ₄	r.t. / 2	18 a	99
4	\longrightarrow	$2,6-Me_2C_6H_3$	80 / 24	19a	42
	< NH		00.404	•	27
		$2,4,6-Me_3C_6H_2$	80724	20a	37
5		2,4,6-Me ₃ C ₆ H ₂	r.t. / 1	21a	92
	—N NH				
		$2,6^{-i}Pr_2C_6H_3$	60/ 2	22a	89

6	NH NH	2,6-Me ₂ C ₆ H ₃	r.t. / 12	23a	86
		2,6-(¹ Pr ₂)C ₆ H ₃	r.t. / 24	24a	76
7	NH	2,6- ⁱ Pr ₂ C ₆ H ₃ (R) 2,4,6-Me ₃ C ₆ H ₂ (R')	r.t. / 2	25a	99
8	0 NH	2,6- ⁱ Pr ₂ C ₆ H ₃ (R) 2,4,6-Me ₃ C ₆ H ₃ (R')	r.t. / 2	26a	93
9	HN NH	$2,6-Me_2C_6H_3$	r.t. / 4	27a	90
		$2,6^{-i}Pr_2C_6H_3$	80 / 12	28a	60

^aIsolated yield

Copy of ¹H and ¹³C NMR Spectra of the products:

S27

	1a	22a	27a
Empirical formula	$C_{21} H_{27} N_3$	$C_{30}H_{46}N_4$	$C_{38}H_{46}N_6$
CCDC	1400660	1400662	1400661
Formula weight	321.46	462.71	586.81
Temperature, K	296(2)	296(2)	296(2)
Wavelength, Å	0.71073	0.71073	0.71073
Crystal system	Triclinic	Monoclinic	Monoclinic
Space group	P-1	P2(1)/c	C2/c
Unit cell	$a = 8.443(2)$ $\alpha = 69.409(10)$	$a = 9.405(2) \alpha = 90.000$	$a = 18.0078(7) \alpha = 90$
dimensions, Å &°	$b = 10.304(2) \beta = 81.907(10)$	$b = 17.120(3) \beta = 102.705$	$b = 13.9272(7) \beta =$
	$c = 12.134(2)$ $\gamma = 77.454(10)$	$c = 18.715(3)$ $\gamma = 90.000$	113.869(4)
			$c = 15.5355(7) \gamma = 90$
Volume, Å ³	962.2(8)	2939.6(19)	3563.0(3)
Ζ	2	4	4
Density	1.110	1.046	1.094
(calculated),			
Mg/m ³			
Absorption	0.066	0.062	0.065
coefficient, mm-1			
F(000)	348	1016	1264
Crystal size, mm ³	0.18 x 0.12 x 0.098	0.12 x 0.097 x 0.089	0.22 x 0.16 x 0.10
Theta range for	2.96 to 25.50	2.22 to 25.50	2.68 to 27.76
data collection, °			
Index ranges	-10<=h<=10, -12<=k<=12,	-11<=h<=11,	-23<=h<=23, -18<=k<=18,
	-14<=l<=14	-20<=k<=20, -22<=l<=22	-18<=l<=20
Reflections	13541	42851	25181
collected			
Independent	3582 [R(int) = 0.0280]	5475 [R(int) = 0.0382]	4188 [R(int) = 0.0542]
reflections			
Completeness to	99.8 %	99.9 %	99.7 %
theta = 25.50°			
Absorption	Empirical	Empirical	Empirical
correction	0.74(1) 10.7010	0.7461 1.0 6046	0.745(10.7000
Max. and min.	0.7461 and 0.7010	0.7461 and 0.6946	0.7456 and 0.7002
Definement	\mathbf{F} 11 and \mathbf{i} 1 and \mathbf{r}	Fall matrix laget arrange	Eall matrix laget arrange ar
method	Full-matrix least-squares on F ²	Full-matrix least-squares	Full-matrix least-squares on E^2
Dete / restraints /	2582 10 1225	0Π Γ ²	Γ-
parameters	5582707225	5475707520	4188707203
Goodness-of-fit	1 041	1.052	1 039
on F^2	1.071	1.052	1.039
Final R indices	R1 = 0.0587, $wR2 = 0.1640$	R1 = 0.0549, wR2 =	R1 = 0.0513, $wR2 = 0.1291$
[I>2sigma(I)]		0.1445	
R indices (all	R1 = 0.0810, $wR2 = 0.1838$	R1 = 0.0724, wR2 =	R1 = 0.0885, $wR2 = 0.1504$
data)		0.1691	
Largest diff. peak	0.369 and -0.206	0.283 and -0.369	0.156 and -0.179
and hole, e.Å ⁻³			

Table S2. Crystal data and structural refinement of compounds 1a, 21a, & 27a,

1a		22a		27a	
N-H	0.800	N-H	0.831	N-H	0.860
N(1)-C(1)	1.288(2)	N(1)-C(1)	1.2810(19)	C(2)–N(4)	1.3966(18)
N(2)-C(1)	1.365(2)	N(2)-C(1)	1.3805(19)	C(2)–N(6)	1.2734(18)
N(3)-C(1)	1.364(2)	N(3)-C(1)	1.3941(19)	C(2)–N(5)	1.3705(18)
N(1)-C(2)	1.397(3)	N(1)-C(2)	1.416(2)	C(22)–N(5)	1.4336(19)
N(2)-C(10)	1.431(2)	N(2)-C(14)	1.4370(19)	C(27)–N(6)	1.417(2)
N(1)-C(1)-N(2)	123.60(17)	N(1)-C(1)-N(2)	125.02(13)	N(6)-C(2)-N(5)	124.92(13)
N(1)-C(1)-N(3)	118.75(17)	N(1)-C(1)-N(3)	119.43(13)	N(6)-C(2)-N(4)	119.84(13)
N(3)-C(1)-N(2)	117.65(16)	N(3)-C(1)-N(2)	115.54(13)	N(5)-C(2)-N(4)	115.23(12)
C(1)-N(2)-C(10)	128.37(17)	C(1)-N(2)-C(14)	126.52(13)	C(2)-N(5)-C(22)	126.62(12)
C(1)-N(1)-C(2)	122.71(17)	C(1)-N(1)-C(2)	121.83(12)	C(2)-N(6)-C(27)	121.23(13)

Table S3. Selected bond lengths (Å) and bond angles (°) of compound 1a, 22a & 27a,