Electronic Supplementary Material (ESI) for New Journal of Chemistry. This journal is © The Royal Society of Chemistry and the Centre National de la Recherche Scientifique 2015

SUPPORTING INFORMATION

Tungsten Oxide by Non-Hydrolytic Sol-Gel: Effect of Molecular Precursor on Morphology, Phase and Photocatalytic Performance

Emma Oakton,^a Georges Siddiqi,^a Alexey Fedorov,^a and Christophe Copéret^{a*}

^a ETH Zürich, Department of Chemistry and Applied Biosciences, Vladimir Prelog Weg 1-5, CH-8093 Zürich, Switzerland. E-mail: ccoperet@inorg.chem.ethz.ch

Characterisation data

	Z
Figure S2. XRD powder pattern of commercial WO ₃ (black) with reference pattern of monoclinic WO ₃ (blue lines)	2
Figure S3. N ₂ adsorption-desorption isotherm of commercial WO ₃	3

Table S1. Surface area and electrical conductivity data	4
Table S2. Elemental analysis data for the NHSG materials before and after N ₂ treatment	4
Table S3. W L ₃ -edge energies of WO _x materials	4

Figure S1. Representative Bright Field TEM image of commercial WO₃

Figure S2. XRD powder pattern of commercial WO $_3$ (black) with reference pattern of monoclinic WO $_3$ (blue lines)

Figure S3. N_2 adsorption-desorption isotherm of commercial WO_3

Sample	S _{BET} / m².g⁻¹	Electrical conductivity / S.cm ⁻¹
WO _{x(VI)}	85	1.5·10 ⁻⁴
WO _{x(IV)}	90	1.0.10-4
WO _{x(VI)} -N ₂	42	4.1·10 ⁻³
WO _{x(IV)} -N ₂	46	4.0·10 ⁻²
Commercial WO ₃	2.7	4.5·10 ⁻⁷

Table S1. Surface area and electrical conductivity data

Table S2. Elemental analysis data for the NHSG materials before and after N_2 treatment

Sample	W	С	CI	N
WO _{x(VI)}	78.6	0.13	0.17	< 0.2
WO _{x(IV)}	78.3	0.87	1.55	< 0.2
WO _{x(VI)} -N ₂	79.1	0.14	< 0.1	< 0.2
WO _{x(IV)} -N ₂	79.9	0.67	0.11	< 0.2

Table S3. W L ₃ -6	edge energies	of WO _x materials
-------------------------------	---------------	------------------------------

Sample	White Line Position / eV
WO ₃	10211.56
WO ₂	10210.34
WO _{x(VI)}	10211.21
WO _{x(IV)}	10210.81