Electronic Supplementary Material (ESI) for New Journal of Chemistry. This journal is © The Royal Society of Chemistry and the Centre National de la Recherche Scientifique 2015

Electronic Supplementary

Solvent specific synthesis of nano corpse flowery Lithiated iron oxide as energy storage and gas sensing material

Rasmita Barika, K.T.Leungb, Mamata Mohapatraa*

Hydro & Electrometallurgy Department, CSIR- Institute of Minerals and Materials Technology, BBSR-

751 013, Odisha, India

Figure S₁. Effect of ratio of Li:Fe on (a) % iron in precipitated product, (b) % Li in precipitated product, (c) % iron precipitation, and (d) % Li precipitation, during synthesis of iron oxide in EG and EGME solvent mediated precipitation routes.

Figure S₂. Relative intensities of the planes (111), (220) and their ratio I(111)/(220) derived from XRD patterns of as synthesised LiFeO₂ samples (a) EG and (b) EGME solvent mediated precipitation routes.

Figure S₃. Specific capacitance values obtained from CV curve for the samples synthesized in presence of Li in EG and EGME medium.

Sample Name	Surface area (m ² /g)	Pore volume (cm ³ /g)
Fe _{EGLi-1}	123.9	0.3824
Fe _{EGLi-4}	40.86	0.1563
Fe _{EGMELi-1}	105.1	0.035
Fe _{EGMELi-4}	38.33	0.0234

Table S1. BET Surface areas, and pore volumes data of the samples synthesized in presence of Li in EG and EGME medium.

Table S₂. Various Synthesis methods for α -LiFeO₂, their morphology and application reported in literature.

Synthesis Method	Phase	Morphology	Property	Ref.
Iron oxide +Lithium carbonate + 400–800°C for 12h in argon atmosphere.	α-LiFeO ₂	Spherical	Magnetic and electrochemical properties	[7]
α-FeOOH+ LiNO3+LiOH Hydrothermal	α -LiFeO ₂		Discharge capacity- 142 mAh/g)	[8]
LiOH·H ₂ O, 100 mM LiNO ₃ and FeCl ₃ ·6H ₂ O heated at 120 °C in beakers for 4 h	α-LiFeO ₂	Rock salt	Supercapacitor and battery	[9]
Ag(CH₃COO) solution +Li(CH₃COO) solution + isopropyl alcohol (3 mL) + Fe(C₅H₁O2)₃ at 400℃ for 12 h.	α-LiFeO ₂		Photovoltaic cell and Battery	[10]
α -FeOOH + LiNO ₃ + LiOH heated at 523K , 3Kmin ⁻¹ for 3 h	α-LiFeO ₂	Rock-salt	50F/g SC	[11]
FeCl ₂ . $4H_2O + LiOH$. $H_2O + LiNO_3$ + Li_2O_2 300 ^o C for 3 h in muffle furnace	α-LiFeO ₂	Spheroidal	cathode material for lithium battery	[12]
α -FOOH + FeCl ₃ · 6H ₂ O+ LiOH·H ₂ O heated at 210°C, 6h	α-LiFeO ₂	cubic rock- salt	Discharge capacity of $31 \ \mu Ah/cm^2 \cdot \mu m$	[13]
FeCl ₂ .6H ₂ O+ LiOH. H ₂ O +LiNO ₃ + Li ₂ O ₂ in alumina crucible and heated to 2000C for 2 h	α-LiFeO ₂	Clusters	High electronic conductivity	[14]
in a muffle furnace LiOH. $H_2O + Fe (NO_3)_3$. $9H_2O$ absolute alcohol. and then stirred for	α-LiFeO ₂	10 nm spheroidal nanomaterial	Discharge Capacity of 101.5 mA h/ g after 50 cycles	[16]
3 h Lithium hydroxide + □-FeOOH + 2-phenoxyethanol heated at 135–200 ^o C for 4 h	α-LiFeO ₂		Li battery with cycling capacity	[17]
α-NaFeO ₂ +Na ₂ CO ₃ + Fe ₂ O ₃ heated at 900 °C for 12 h in.	α-LiFeO ₂		Discharge capacity120 mAh/g	[18]
β -FeOOH +LiOH·H ₂ O +Li ₂ CO ₃ + CH ₃ COOLi + LiNO ₃ + ethanol solution	α-LiFeO ₂	Needle	Battery	[19]
At 85°C. LiOH. H ₂ O + Fe (NO ₃) ₃ · 9H ₂ O in EG/EGME, stirred for 3 h, 100°C.	α-LiFeO ₂	Flowery/ spheroid	Specific capacitance& gas sensor	This study