Structure-Reactivity Correlation in selective colorimetric detection of cyanide in solid, organic and aqueous phases using quinone based chemodosimeters

R. Manivannan and Kuppanagounder P. Elango*

Supporting Information

Figure	igure Content					
No.						
S1	Color change of S1-S5 with various anions					
S2	UV-Vis spectra of $S2$ with addition of CN^{-1} ion	6				
S 3	UV-Vis spectra of $S3$ with addition of CN^{-1} ion	7				
S4	UV-Vis spectra of $S4$ with addition of CN^{-} ion	8				
S5	UV-Vis spectra of $S5$ with addition of CN^{-1} ion	9				
S6	Correlation between Hammett's substituent constants (σ_p) and λ_{ICT} values	10				
S7	Fluorescence emission spectra of $S2$ with addition of CN^{-} ion	11				
S8	Fluorescence emission spectra of S3 with addition of CN ⁻ ion	12				
S9	Fluorescence emission spectra of S4 with addition of CN ⁻ ion	13				
S10	Fluorescence emission spectra of S5 with addition of CN ⁻ ion	14				
	Determination of binding constant (K)	15				
S11	Benesi-Hildebrand plot of S1 -CN ⁻ complex	16				
S12	Benesi-Hildebrand plot of S2 -CN ⁻ complex	17				

S13	Benesi-Hildebrand plot of S3- CN ⁻ complex	18			
S14	Benesi-Hildebrand plot of S4 -CN ⁻ complex	19			
S15	Benesi-Hildebrand plot of S5 -CN ⁻ complex	20			
S16	Job's plot of $S1$ with CN^{-} ion	21			
S17	Detection limit plot of $S1$ -CN ⁻ complex	22			
S18	Detection limit plot of $S2-CN^-$ complex	23			
S19	Detection limit plot of S3 -CN ⁻ complex	24			
S20	Detection limit plot of S4 -CN ⁻ complex	25			
S21	Detection limit plot of S5 -CN ⁻ complex	26			
S22	¹ H NMR spectrum of S2 with addition of (a) 0 eqv. (b) 0.5 eqv. (c) 1.0 eqv. of TBACN in DMSO- d_6	27			
S23	¹ H NMR spectrum of S3 with addition of (a) 0 eqv. (b) 0.5 eqv. (c) 1.0 eqv. of TBACN in DMSO- d_6	28			
S24	¹ H NMR spectrum of S4 with addition of (a) 0 eqv. (b) 0.5 eqv. (c) 1.0 eqv. of TBACN in DMSO- d_6 .	29			
S25	¹ H NMR spectrum of S5 with addition of (a) 0 eqv. (b) 0.5 eqv. (c) 1.0 eqv. of TBACN in DMSO-d ₆	30			
S26	¹ H NMR spectrum of (a) free S1 (b) S1 + 0.5 eqv. F^{-} (c) S1 + (0.5 eqv. F^{-}) + 2 eqv. CN^{-} (d) S1 + 1 eqv. CN^{-}).5 eqv. F ⁻ 31 + 1 eqv.			
S27	¹³ C NMR spectrum of S5 with addition of TBACN in DMSO-d ₆	32			
S28	Changes in redox properties of S2 upon addition of TBACN in ACN	33			
S29	Changes in redox properties of S3 upon addition of TBACN in ACN	34			
S30	Changes in redox properties of S4 upon addition of	35			

	TBACN in ACN					
S31	Changes in redox properties of S5 upon addition of TBACN in ACN	36				
S32	Optimized structure for sensors S1-S5 and its cyanide complex	37				
S33	Molecular orbitals (HOMO–LUMO) of sensors S1 - S5	38				
\$34	Molecular orbitals (HOMO –LUMO) of sensors– CN ⁻ complexes	39				
Table S1	Energies (in eV) of the MOs in free sensors and in sensor- CN ⁻ ion complexes	40				
S35	Color change of test strips upon dipping in solution of NaCN in deep well water.	41				
S36	¹ H NMR spectrum of S1 in DMSO-d ₆	42				
S37	¹ H- ¹ H COSY spectrum of S1 in DMSO-d ₆	43				
S38	¹³ C NMR spectrum of S1 in DMSO- d_6	44				
S 39	LCMS spectrum of S1	45				
S40	¹ H NMR spectrum of S2 in DMSO-d ₆	46				
S41	¹³ C NMR spectrum of S2 in DMSO- d_6	47				
S42	LCMS spectrum of S2	48				
S43	¹ H NMR spectrum of S3 in DMSO-d ₆	49				
S44	¹ H- ¹ H COSY spectrum of S3 in DMSO- d_6	50				
S45	¹³ C NMR spectrum of S3 in DMSO- d_6	51				
S46	LCMS spectrum of S3	52				
S47	¹ H NMR spectrum of S4 in DMSO- d_6					
S48	¹ H- ¹ H COSY spectrum of S4 in DMSO- d_6	54				

S49	13 C NMR spectrum of S4 in DMSO-d ₆	55
S50	LCMS spectrum of S4	56
S51	¹ H NMR spectrum of S5 in DMSO-d ₆	57
S52	¹³ C NMR spectrum of S5 in DMSO-d ₆	58
S53	LCMS spectrum of S5	59
S54	¹ H NMR spectrum of S5- CN ⁻ complex in DMSO-d ₆	60
S55	¹³ C NMR spectrum of S5- CN ⁻ complex in DMSO-d ₆	61
S56	LCMS spectrum of S5-CN ⁻ complex	62

Fig. S1. Color change of **S1-S5** $(6.25 \times 10^{-5} \text{ M})$ with various anions.

Fig. S2. UV-Vis spectra of **S2** (6.25×10^{-5} M) with incremental addition of TBACN ($0-6.25 \times 10^{-6}$ M) in aq. HEPES buffer/ACN (8:2 v/v).

Fig. S3. UV-Vis spectra of **S3** (6.25×10^{-5} M) with incremental addition of TBACN ($0-6.25 \times 10^{-6}$ M) in aq. HEPES buffer/ACN (8:2 v/v).

Fig. S4. UV-Vis spectra of **S4** (6.25×10^{-5} M) with incremental addition of TBACN ($0-6.25 \times 10^{-6}$ M) in aq. HEPES buffer/ACN (8:2 v/v).

Fig. S5. UV-Vis spectra of **S5** (6.25×10^{-5} M) with incremental addition of TBACN ($0-6.25 \times 10^{-6}$ M) in aq. HEPES buffer/ACN (8:2 v/v).

Fig. S6. Correlation between the λ_{ICT} and the Hammett's substituent constants (σ_p)

Fig. S7. Fluorescence spectra of **S2** (6.25×10^{-5} M) with incremental addition of TBACN (0- 6.25×10^{-6} M) in aq. HEPES buffer/ACN (8:2 v/v).

Fig. S8. Fluorescence spectra of **S3** (6.25×10^{-5} M) with incremental addition of TBACN (0- 6.25×10^{-6} M) in aq. HEPES buffer/ACN (8:2 v/v).

Fig. S9. Fluorescence spectra of **S4** (6.25×10^{-5} M) with incremental addition of TBACN (0- 6.25×10^{-6} M) in aq. HEPES buffer/ACN (8:2 v/v).

Fig. S10. Fluorescence spectra of **S5** (6.25×10^{-5} M) with incremental addition of TBACN ($0-6.25 \times 10^{-6}$ M) in aq. HEPES buffer/ACN (8:2 v/v).

Determination of binding constant (K)

From the fluorescence enhancement data the binding constants for the sensors-cyanide complexes can be determined using the following Benesi-Hildebrand equation [37]:

$$(F_{\infty}-F_{o})/(F_{x}-F_{o}) = 1/K [CN^{-}]$$

Where F_{o} , F_x and F_{∞} are the fluorescence intensities of the sensor in the absence of cyanide ions, at given cyanide ion concentrations and at a concentration for complete interaction, respectively. In the present study in all the cases plots of $(F_{\infty}-F_o)/(F_x-F_o)$ versus $1/[CN^-]$ are linear (r > 0.995; Fig. S11-S15).

Fig. S11. Benesi-Hildebrand plot of **S1**-CN⁻ complex.

Fig. S12. Benesi-Hildebrand plot of **S2**-CN⁻ complex.

Fig. S13. Benesi-Hildebrand plot of S3-CN⁻ complex.

Fig. S14. Benesi-Hildebrand plot of **S4-**CN⁻ complex.

Fig. S15. Benesi-Hildebrand plot of **S5**- CN^{-} complex.

Fig. S16. Job's plot of **S1** with F^- and CN^- ion.

Fig. S17. Detection limit plot of **S1**- CN^{-} complex.

Fig. S18. Detection limit plot of **S2**- CN^{-} complex.

Fig. S19. Detection limit plot of **S3**-CN⁻ complex.

Fig. S20. Detection limit plot of **S4**-CN⁻ complex.

Fig. S21. Detection limit plot of **S5**-CN⁻ complex.

Fig. S22. ¹H NMR spectrum of **S2** with addition of (a) 0 eqv. (b) 0.5 eqv. (c) 1.0 eqv. of TBACN in DMSO- d_6 .

Fig. S23. ¹H NMR spectrum of **S3** with addition of (a) 0 eqv. (b) 0.5 eqv. (c) 1.0 eqv. of TBACN in DMSO-d₆.

Fig. S24. ¹H NMR spectrum of **S4** with addition of (a) 0 eqv. (b) 0.5 eqv. (c) 1.0 eqv. of TBACN in DMSO- d_6 .

Fig. S25. ¹H NMR spectrum of **S5** with addition of (a) 0 eqv. (b) 0.5 eqv. (c) 1.0 eqv. of TBACN in DMSO- d_6 .

Fig. S26. ¹H NMR spectrum of (a) free **S1** (b) **S1** + 0.5 eqv. F^{-} (c) **S1** + (0.5 eqv. F^{-}) + 2 eqv. CN^{-} (d) **S1** + 1 eqv. CN^{-} .

Fig. S27. ¹³C NMR spectrum of S5 with addition of TBACN in DMSO-d₆.

Fig. S28. Changes in redox properties of S2 upon addition of TBACN in ACN.

Fig. S29. Changes in redox properties of S3 upon addition of TBACN in ACN.

Fig. S30. Changes in redox properties of S4 upon addition of TBACN in ACN.

Fig. S31. Changes in redox properties of S5 upon addition of TBACN in ACN.

Fig. S32. Optimized structure for sensors S1-S5 and its cyanide complex.

Fig. S33. Molecular orbitals (HOMO–LUMO) of sensors S1-S5.

HOMO of S2-CN

HOMO of S3-CN

HOMO of S4-CN

LUMO of S1-CN

LUMO of \$2-CN

LUMO of \$3-CN

LUMO of S4-CN

Fig. S34. Molecular orbitals (HOMO –LUMO) of sensors–CN⁻ complexes.

Sensor	Free sensor			Sensor-anion complex			$\Delta_{\Delta \mathrm{E}}$
	E _{HOMO}	E _{LUMO}	ΔΕ	E _{HOMO}	E _{LUMO}	ΔΕ	
S1	-6.2562	-4.3756	1.8806	-6.5452	-4.7027	1.8425	0.0381
S2	-6.5226	-4.4371	2.0855	-6.8682	-4.8184	2.0498	0.0357
S 3	-6.5898	-4.4834	2.1064	-6.9876	-4.8175	2.1701	-0.0637
S4	-6.7849	-4.6129	2.1720	-7.1398	-4.9280	2.2118	-0.0398
S 5	-7.1738	-4.8331	2.3407	-7.5896	-5.1550	2.4346	-0.0939

Table S1. Energies (in eV) of the MOs in free sensors and in sensor- CN^{-} ion complexes.

Fig. S35. Color change of test strips upon dipping in solution of NaCN in deep well water.

Fig. S36. ¹H NMR spectrum of **S1** in DMSO- d_6 .

Fig. S37. ¹H- ¹H COSY spectrum of **S1** in DMSO-d₆.

Fig. S38. ¹³C NMR spectrum of S1 in DMSO-d₆.

Fig. S39. LCMS spectrum of S1.

Fig. S40. ¹H NMR spectrum of **S2** in DMSO- d_6 .

Fig. S41. ¹³C NMR spectrum of S2 in DMSO-d₆.

Fig. S42. LCMS spectrum of S2.

Fig. S43. ¹H NMR spectrum of S3 in DMSO-d₆.

Fig. S44. 1 H- 1 H COSY spectrum of **S3** in DMSO-d₆.

Fig. S45. ¹³C NMR spectrum of **S3** in DMSO- d_6 .

Fig. S46. LCMS spectrum of S3.

Fig. S47. ¹H NMR spectrum of **S4** in DMSO- d_6 .

Fig. S48. ¹H- ¹H COSY spectrum of **S4** in DMSO-d₆.

Fig. S49. ¹³C NMR spectrum of **S4** in DMSO- d_6 .

N	ISD2 SPC, time=2.	187:2.364		MM	A-ES+APCI, Neg,	Scan, Frag: 120, "N	NEG"	
4000 -	85.2			397 30 6.8				
2000 - 0 - 0 -	100	200	300	400	500	600	700	, , , , , , , , , , , , , , , , , , ,

Fig. S50. LCMS spectrum of S4.

Fig. S51. ¹H NMR spectrum of **S5** in DMSO- d_6 .

Fig. S52. ¹³C NMR spectrum of S5 in DMSO-d₆.

Fig. S53. LCMS spectrum of S5.

Fig. S54. ¹H NMR spectrum of S5 in DMSO-d₆.

Fig. S55. ¹³C NMR spectrum of S5 in DMSO-d₆.

Fig. S56. LCMS spectrum of S5.