Electronic Supplementary Material (ESI) for New Journal of Chemistry. This journal is © The Royal Society of Chemistry and the Centre National de la Recherche Scientifique 2015

#### Supplementary material for the paper

#### RSC NJC (08. 27. 2015)

Oxoiron(IV)-mediated Baeyer-Villiger oxidation of cyclohexanones generated by dioxygen with co-oxidation of aldehydes.

Dóra Lakk-Bogáth,<sup>a</sup> Gábor Speier,<sup>a</sup> and József Kaizer\*<sup>a</sup>

<sup>a</sup>Department of Chemistry, University of Pannonia, H-8200 Veszprém, Hungary. Fax: +36 88 624 469; Tel: +36 88 624 720; E-mail: kaizer@almos.vein.hu.

Materials

Analytical and physical measurements

Determination of products

Catalytic oxidations

Stoichiometric oxidations

I. Iron-catalyzed Baeyer-Villiger oxidation of cyclohexanones with  $O_2$  in the presence of aldehydes

II.  $Fe^{IV}=O$  formation with  $O_2$  in the presence of aldehydes

III. Fe<sup>IV</sup>=O mediated Baeyer-Villiger oxidation

## **Materials**

 $[Fe^{II}(N_4Py)(CH_3CN)](ClO_4)_2$  was prepared according to the literature. All other chemicals were commercial products and they were used without further purification.

## Analytical and physical measurements

UV-vis spectra were recorded on an Agilent 8453 diode-array spectrophotometer using quartz cells. GC analyses were performed on an Agilent 7820A gas chromatograph equipped with a flame ionization detector and a 30 m HP-5 column. GC-MS analyses were carried out on Shimadzu QP2010SE equipped with a secondary electron multiplier detector with conversion dynode and a 30 m HP-5MS column.

# **Determination of products**

All reactions were carried out in a 20 mL Schlenk tube equipped with a condenser. Cyclohexanone  $(1.00 \times 10^{-2} \text{ M})$ , [Fe<sup>II</sup>(N<sub>4</sub>Py)(CH<sub>3</sub>CN)](ClO<sub>4</sub>)<sub>2</sub>  $(1.00 \times 10^{-5} \text{ M})$ , acetonitrile (5 mL) and the initiator isobutyraldehyde or benzaldehyde derivatives  $(1.50 \times 10^{-1} \text{ M})$  were added and then the mixture was stirred at 25°C or 60°C under oxygen atmosphere for 2-24 hours. The products were identified by GC (Agilent 7820A) and GC-MS (Shimadzu QP2010SE) and the yields were calculated based on the amount of cyclohexanone consumed in the reactions.

## **Catalytic oxidations**

 $[Fe^{II}(N_4Py)(CH_3CN)](CIO_4)_2$  complex  $(2.00 \times 10^{-3} \text{ M})$  was dissolved in acetonitrile (1.5 mL) then the benzaldehyde was added to the solution and the progress of the reaction was monitored with UV-vis spectrophotometer (Agilent 8453) at 693 nm ( $\varepsilon = 400 \text{ M}^{-1} \text{ cm}^{-1}$ ).

#### **Stoichiometric oxidations**

 $[Fe^{II}(N_4Py)(CH_3CN)](ClO_4)_2$  complex  $(2.00 \times 10^{-3} \text{ M})$  was dissolved in acetonitrile (1.5 mL), then iodosobenzene (4.00 × 10<sup>-3</sup> M) was added to the solution. The mixture was stirred for one hour then excess iodosobenzene was removed by filtration. Cyclohexanone (1.00 × 10<sup>-1</sup> M) was added to the solution and the reaction was monitored with UV-vis spectrophotometer (Agilent 8453) at 693 nm ( $\epsilon = 400 \text{ M}^{-1} \text{ cm}^{-1}$ ).

# I. Iron-catalyzed Baeyer-Villiger oxidation of cyclohexanones with O<sub>2</sub> in the presence of aldehydes

**Fig. S1.** GC-MS chromatogram of the reaction of cyclohexanone, benzaldehyde and **1** in MeCN at 60°C under oxygen atmosphere.  $[\mathbf{1}]_0 = 1.00 \times 10^{-5}$  M,  $[cyclohexanone]_0 = 1.00 \times 10^{-2}$  M,  $[benzaldehyde]_0 = 1.50 \times 10^{-1}$  M.



*ε*-caprolactone: m/z (relative intensity) 114 (M<sup>+</sup>, 12.6); 84 (24.1); 70 (15.3); 56 (39.6); 55 (100); 42 (99.8); 41 (49.6); 39 (23.5).

**Fig. S2.** GC-MS chromatogram of the reaction of cyclohexanone, benzaldehyde and **1** in MeCN at 25°C under <sup>18</sup>O atmosphere.  $[\mathbf{1}]_0 = 1.00 \times 10^{-5}$  M, [cyclohexanone]\_0 =  $1.00 \times 10^{-2}$  M, [benzaldehyde]\_0 =  $1.50 \times 10^{-1}$  M.



cyclohexanone: m/z (relative intensity) 98 (M<sup>+</sup>, 39.4); 83 (9.2); 70 (22.8); 69 (30.9);57 (12); 56 (10.2); 55 (100); 43 (11.7); 42 (77.9); 41 (36); 39 (27.4).

benzaldehyde: m/z (relative intensity) 107 (13.6); 106 (M<sup>+</sup>, 86.7); 105 (80.3); 94 (7.7); 78 (17.2); 77 (100); 74 (8.7); 66 (5.3); 52 (12.4); 51 (51.1); 50 (27.5); 39 (9.9).

*ε*-caprolactone: m/z (relative intensity) 116 (7.7); 114 (M<sup>+</sup>, 4.8); 84 (22.4); 70 (13.1);57 (9.7); 56 (38.7); 55 (100); 42 (94.3); 41 (47.7); 39 (24).

benzoic acid: m/z (relative intensity) 124 (64.6); 122 (M<sup>+</sup>, 54.7); 107 (37.9); 105 (91.9); 78 (10); 77 (100); 51 (50.5); 50 (25.7).

**Fig. S3.** GC-MS chromatogram of the reaction of 2-methyl-cyclohexanone, benzaldehyde and **1** in MeCN at 60°C under oxygen atmosphere.  $[\mathbf{1}]_0 = 1.00 \times 10^{-5}$  M,  $[2\text{-methyl-cyclohexanone}]_0 = 1.00 \times 10^{-2}$  M,  $[benzaldehyde]_0 = 1.50 \times 10^{-1}$  M.



6-methyl-ε-caprolactone: m/z (relative intensity) 128 (M<sup>+</sup>, 10.1); 98 (16.5); 96 (54.4); 83 (26.3); 82 (16.2); 70 (25.2); 69 (28.3); 56 (100); 55 (54.2); 54 (34.7); 43 (16.3); 42 (29.5); 41 (56.2); 39 (24.8).

**Fig. S4.** GC-MS chromatogram of the reaction of 3-methyl-cyclohexanone, benzaldehyde and 1 in MeCN at 60°C under oxygen atmosphere.  $[\mathbf{1}]_0 = 1.00 \times 10^{-5}$  M,  $[3\text{-methyl-cyclohexanone}]_0 = 1.00 \times 10^{-2}$  M,  $[benzaldehyde]_0 = 1.50 \times 10^{-1}$  M.



5-methyl-ε-caprolactone: m/z (relative intensity) 128 (M<sup>+</sup>, 7); 100 (13); 98 (31.9); 72 (16.5); 70 (18); 69 (100); 57 (11.3); 56 (61.7); 55 (72.6); 43 (23.4); 42 (90); 41 (59.3); 39 (27.7). 3-methyl-ε-caprolactone: m/z (relative intensity) 128 (M<sup>+</sup>, 12.1); 98 (100); 83 (18.6); 80 (73.9); 70 (11.1); 69 (25.2); 56 (47.5); 55 (52.2); 42 (24.7); 41 (59.6); 39 (25.8).

**Fig. S5.** GC-MS chromatogram of the reaction of 4-methyl-cyclohexanone, benzaldehyde and **1** in MeCN at 60°C under oxygen atmosphere.  $[\mathbf{1}]_0 = 1.00 \times 10^{-5}$  M, [4-methyl-cyclohexanone] $_0 = 1.00 \times 10^{-2}$  M, [benzaldehyde] $_0 = 1.50 \times 10^{-1}$  M.



4-methyl-*ɛ*-caprolactone: m/z (relative intensity) 128 (M<sup>+</sup>, 8.1); 98 (13.2); 70 (9.5); 69 (51.3); 57 (6); 56 (100); 55 (51.4); 43 (11.3); 42 (20.7); 41 (41.4); 39 (14.4).

**Fig. S6.** GC-MS chromatogram of the reaction of 4-tert-buthyl-cyclohexanone, benzaldehyde and **1** in MeCN at 60°C under oxygen atmosphere.  $[\mathbf{1}]_0 = 1.00 \times 10^{-5}$  M,  $[4-tert-butyl-cyclohexanone]_0 = 1.00 \times 10^{-2}$  M,  $[benzaldehyde]_0 = 1.50 \times 10^{-1}$  M.



4-*tert*-butyl-ε-caprolactone: m/z (relative intensity) 170 (M<sup>+</sup>, 4.1); 114 (69.2); 86 (79.6); 83 (12.7); 69 (12.5); 68 (16.8); 57 (100); 56 (12.1); 55 (75.8); 54 (12.8); 43 (9.5); 42 (6.8); 41 (46.8); 39 (14.0).

**Table S1.** Calculated yields, TON and TOF values for the reaction of 1 with different benzaldehyde and cyclohexanone derivatives in MeCN under oxygen atmosphere.

| $N_0$ | t   | Т   | substrate                  | $[Fe]_0$              | <b>[S</b> ] <sub>0</sub> | co-reductant         | [co-                    | yield | TON | TOF   |
|-------|-----|-----|----------------------------|-----------------------|--------------------------|----------------------|-------------------------|-------|-----|-------|
|       | (h) | (K) |                            | $(10^{-3} \text{ M})$ | (M)                      |                      | reductant] <sub>0</sub> | (%)   |     | (1/h) |
| 1     | 17  | 298 | cyclohexanone <sup>A</sup> | 0.01                  | 0.01                     | benzaldehyde         | 0.15                    | 21.5  | 215 | 12.65 |
| 2     | 5   | 333 | cyclohexanone              | -                     | 0.01                     | benzaldehyde         | 0.15                    | 9.8   | -   | -     |
| 2     | 5   | 333 | cyclohexanone              | 0.01                  | 0.01                     | benzaldehyde         | 0.15                    | 33.6  | 336 | 67.20 |
| 3     | 5   | 333 | cyclohexanone              | 0.01                  | 0.01                     | isobutyraldehyde     | 0.15                    | 6.2   | 62  | 12.40 |
| 4     | 15  | 333 | cyclohexanone              | 0.01                  | 0.01                     | benzaldehyde         | 0.15                    | 73.0  | 730 | 48.67 |
| 5     | 15  | 333 | cyclohexanone              | 0.01                  | 0.01                     | isobutyraldehyde     | 0.15                    | 16.4  | 164 | 10.93 |
| 6     | 15  | 333 | cyclohexanone              | 0.01                  | 0.01                     | 4-methylbenzaldehyde | 0.15                    | 79.5  | 795 | 53.00 |
| 7     | 15  | 333 | cyclohexanone              | 0.01                  | 0.01                     | 4-chlorobenzaldehyde | 0.15                    | 54.7  | 547 | 36.47 |
| 8     | 15  | 333 | cyclohexanone              | 0.01                  | 0.01                     | 4-cyanobenzaldehyde  | 0.15                    | 36.4  | 364 | 24.27 |
| 9     | 15  | 333 | cyclohexanone              | 0.01                  | 0.01                     | 4-nitrobenzaldehyde  | 0.15                    | 29.4  | 294 | 19.60 |
| 10    | 15  | 333 | cyclohexanone              | -                     | 0.01                     | benzaldehyde         | 0.15                    | 28.3  | -   | -     |
| 11    | 15  | 333 | cyclohexanone              | -                     | 0.01                     | 4-methylbenzaldehyde | 0.15                    | 32.9  | -   | -     |

| 12 | 15 | 333 | cyclohexanone              | -    | 0.01 | 4-chlorobenzaldehyde          | 0.15 | 18.2 | -    | -     |
|----|----|-----|----------------------------|------|------|-------------------------------|------|------|------|-------|
| 13 | 15 | 333 | cyclohexanone              | -    | 0.01 | 4-cyanobenzaldehyde           | 0.15 | 10.3 | -    | -     |
| 14 | 15 | 333 | cyclohexanone              | -    | 0.01 | 4-nitrobenzaldehyde           | 0.15 | 8.9  | -    | -     |
| 15 | 15 | 333 | 2-methyl-                  | -    | 0.01 | benzaldehyde                  | 0.15 | 25.2 | -    | -     |
|    |    |     | cyclohexanone              |      |      |                               |      |      |      |       |
| 16 | 15 | 333 | 3-methyl-                  | -    | 0.01 | benzaldehyde                  | 0.15 | 2.2  | -    | -     |
|    |    |     | cyclohexanone <sup>C</sup> |      |      |                               |      |      |      |       |
| 17 | 15 | 333 | 4-methyl-                  | -    | 0.01 | benzaldehyde                  | 0.15 | 18.5 | -    | -     |
|    |    |     | cyclohexanone              |      |      |                               |      |      |      |       |
| 18 | 15 | 333 | 4-tert-butyl-              | -    | 0.01 | benzaldehyde                  | 0.15 | 3.8  | -    | -     |
|    |    |     | cyclohexanone              |      |      |                               |      |      |      |       |
| 19 | 24 | 298 | cyclohexanone <sup>B</sup> | 0.01 | 0.01 | benzaldehyde                  | 0.15 | 33.1 | 331  | 13.79 |
| 20 | 15 | 333 | 2-methyl-                  | 0.01 | 0.01 | benzaldehyde                  | 0.15 | 62.5 | 625  | 41.67 |
|    |    |     | cyclohexanone <sup>C</sup> |      |      |                               |      |      |      |       |
| 21 | 15 | 333 | 3-methyl-                  | 0.01 | 0.01 | benzaldehyde                  | 0.15 | 15.5 | 155  | 10.33 |
|    |    |     | cyclohexanone <sup>D</sup> |      |      |                               |      |      |      |       |
| 22 | 15 | 333 | 4-methyl-                  | 0.01 | 0.01 | benzaldehyde                  | 0.15 | 53.0 | 530  | 35.33 |
|    |    |     | cyclohexanone              |      |      |                               |      |      |      |       |
| 23 | 15 | 333 | 4-tert-butyl-              | 0.01 | 0.01 | benzaldehyde                  | 0.15 | 18.0 | 180  | 12.00 |
|    |    |     | cyclohexanone              |      |      |                               |      |      |      |       |
| 24 | 15 | 333 | cyclohexanone              | -    | 0.01 | <i>m</i> -chloroperoxybenzoic | 0.15 | 92.6 | -    | -     |
|    |    |     |                            |      |      | acid                          |      |      |      |       |
| 25 | 15 | 333 | cyclohexanone              | 0.01 | 0.01 | <i>m</i> -chloroperoxybenzoic | 0.15 | 100  | 1000 | 66.67 |
|    |    |     |                            |      |      | acid                          |      |      |      |       |
| 26 | 5  | 333 | cyclohexanone              | -    | 0.01 | <i>m</i> -chloroperoxybenzoic | 0.15 | 16.8 | -    | -     |
|    |    |     |                            |      |      | acid                          |      |      |      |       |
| 27 | 5  | 333 | cyclohexanone              | 0.01 | 0.01 | <i>m</i> -chloroperoxybenzoic | 0.15 | 59.1 | 591  | 118.2 |
|    |    |     |                            |      |      | acid                          |      |      |      |       |
| 28 | 5  | 323 | cyclohexanone              | 0.01 | 0.01 | <i>m</i> -chloroperoxybenzoic | 0.15 | 41.6 | 416  | 83.2  |
|    |    |     |                            |      |      | acid                          |      |      |      |       |
| 29 | 5  | 343 | cyclohexanone              | 0.01 | 0.01 | <i>m</i> -chloroperoxybenzoic | 0.15 | 73.9 | 739  | 147.8 |
|    |    |     |                            |      |      | acid                          |      |      |      |       |
| 30 | 5  | 323 | cyclohexanone              | 0.01 | 0.01 | benzaldehyde                  | 0.15 | 21.9 | 219  | 43.8  |
| 31 | 5  | 343 | cyclohexanone              | 0.01 | 0.01 | benzaldehyde                  | 0.15 | 46.8 | 468  | 93.6  |

<sup>A</sup> under air
<sup>B</sup> under <sup>18</sup>O atmosphere
<sup>C</sup> only 6-methyl-ε-caprolactone was formed (T. Kawabata, Y. Ohishi, S. Itsuku, N. Fujisaki, T. Shishido, K. Takaki, Q. Zhang, Y. Wang and K. Takehira, *J. Mol. Cat. A.: Chemical*, 2005, 236, 99-

106) <sup>D</sup> two products were formed in 1:1 ratio.



**Figure S7.** Yields without and with catalyst for the 1-catalysed B.-V. oxidation of cyclohexanone with benzaldehyde or *m*-CPBA in MeCN at 60°C for 5 hours.  $[\mathbf{1}]_0 = 1.00 \times 10^{-5}$  M, [cyclohexanone]\_0 =  $1.00 \times 10^{-2}$  M, [benzaldehyde]\_0 =  $1.50 \times 10^{-1}$  M, [*m*-CPBA]\_0 =  $1.50 \times 10^{-1}$  M.



**Figure S8.** Yields with benzaldehyde ( $\Box$ ) and with *m*-CPBA (**•**) for the **1**-catalysed B.-V. oxidation of cyclohexanone in MeCN at 60°C for 5 hours. [**1**]<sub>0</sub> =  $1.00 \times 10^{-5}$  M, [cyclohexanone]<sub>0</sub> =  $1.00 \times 10^{-2}$  M, [benzaldehyde]<sub>0</sub> =  $1.50 \times 10^{-1}$  M, [*m*-CPBA]<sub>0</sub> =  $1.50 \times 10^{-1}$  M.

| Table S2. Calculated yields, TON and relative reaction rate values for the reaction of | f <b>1</b> w | vith d | ifferent | t |
|----------------------------------------------------------------------------------------|--------------|--------|----------|---|
| benzaldehyde derivatives and cyclohexanone in MeCN under oxygen atmosphere             | for 1        | 15 h   | and at   | t |
| 60°C.                                                                                  |              |        |          |   |

| N <sub>0</sub> | t   | Т   | aldehyde                    | $[Fe]_0$              | <b>[S]</b> <sub>0</sub> | [aldehyde] <sub>0</sub> | yield | TON | k <sub>rel</sub> |
|----------------|-----|-----|-----------------------------|-----------------------|-------------------------|-------------------------|-------|-----|------------------|
|                | (h) | (K) |                             | $(10^{-3} \text{ M})$ | (M)                     |                         | (%)   |     |                  |
| 1              | 15  | 333 | benzaldehyde                | -                     | 0.01                    | 0.15                    | 28.3  | -   | 1                |
| 2              | 15  | 333 | benzaldehyde                | 0.01                  | 0.01                    | 0.15                    | 73    | 730 | 1                |
| 3              | 15  | 333 | 4-methylbenzaldehyde        | -                     | 0.01                    | 0.15                    | 32.9  | -   | 1.20             |
| 4              | 15  | 333 | 4-methylbenzaldehyde        | 0.01                  | 0.01                    | 0.15                    | 79.5  | 795 | 1.21             |
| 5              | 15  | 333 | 4-chlorobenzaldehyde        | -                     | 0.01                    | 0.15                    | 18.2  | -   | -0.20            |
| 6              | 15  | 333 | 4-chlorobenzaldehyde        | 0.01                  | 0.01                    | 0.15                    | 54.7  | 547 | -0.22            |
| 7              | 15  | 333 | 4-cyanobenzaldehyde         | -                     | 0.01                    | 0.15                    | 10.3  | -   | -0.48            |
| 8              | 15  | 333 | 4-cyanobenzaldehyde         | 0.01                  | 0.01                    | 0.15                    | 36.4  | 364 | -0.50            |
| 9              | 15  | 333 | 4-nitrobenzaldehyde         | -                     | 0.01                    | 0.15                    | 8.9   | -   | -0.55            |
| 10             | 15  | 333 | 4-nitrobenzaldehyde         | 0.01                  | 0.01                    | 0.15                    | 29.4  | 294 | -0.58            |
| 11             | 15  | 333 | 4-hydroxybenzaldehyde       | -                     | 0.01                    | 0.15                    | -     | -   | -                |
| 12             | 15  | 333 | 4-hydroxybenzaldehyde       | 0.01                  | 0.01                    | 0.15                    | -     | -   | -                |
| 13             | 15  | 333 | 4-dimethylaminobenzaldehyde | -                     | 0.01                    | 0.15                    | -     | -   | -                |
| 14             | 15  | 333 | 4-dimethylaminobenzaldehyde | 0.01                  | 0.01                    | 0.15                    | -     | -   | -                |



**Fig. S9.** Visible spectral change for the decay of  $\text{Fe}^{\text{IV}}=\text{O}$  species (at 693 nm) derived from the reaction of **1**, benzaldehyde and cyclohexanone in MeCN at 25 °C. Inset: The change of  $\text{Fe}^{\text{IV}}=\text{O}$  concentration (at 693 nm) derived from the reaction of  $\text{Fe}^{\text{IV}}=\text{O}$ , benzaldehyde and cyclohexanone in MeCN at 25 °C. [**1**]<sub>0</sub> = 2.00 × 10<sup>-3</sup> M, [benzaldehyde]<sub>0</sub>= 8.00 × 10<sup>-2</sup> M, [cyclohexanone]<sub>0</sub> = 1.00 × 10<sup>-1</sup> M.





**Fig. S10.** Fe<sup>IV</sup>=O formation (at 693 nm) versus time in the reaction of **1** with benzaldehyde (**a**) and chloroperoxybenzoic acid (**b**) in MeCN at 25 °C.  $[\mathbf{1}]_0 = 2.00 \times 10^{-3}$  M, [benzaldehyde]\_0 =  $1.00 \times 10^{-2}$  M, [*m*-chloroperoxybenzoic acid]\_0 =  $1.00 \times 10^{-2}$  M.



**Fig. S11.** Formation of Fe<sup>IV</sup>=O (at 693 nm) versus time in the reaction of **1** with different aldehydes in MeCN at 25 °C.  $[\mathbf{1}]_0 = 2.00 \times 10^{-3}$  M, [aldehyde]<sub>0</sub> =  $4.00 \times 10^{-2}$  M.



**Fig. S12.** Hammett plot of para-substituted benzaldehydes in MeCN at 25 °C.  $[1]_0 = 2.00 \times 10^{-3}$  M, [aldehyde]<sub>0</sub> = 4.00 × 10<sup>-2</sup> M.



**Fig. S13.** Formation of Fe<sup>IV</sup>=O (at 693 nm) versus time in the reaction of **1** with benzaldehyde under oxygen (**a**) and under air (**b**) in MeCN at 25 °C.  $[\mathbf{1}]_0 = 1.00 \times 10^{-3}$  M, [benzaldehyde]\_0 =  $8.00 \times 10^{-2}$  M.



**Fig. S14.** Reaction rates versus dioxygen concentration in MeCN at 25 °C.  $[1]_0 = 1.00 \times 10^{-3}$  M, [benzaldehyde]<sub>0</sub> =  $8.00 \times 10^{-2}$  M.



Fig. S15. Reaction rates versus iron concentration in MeCN at 25 °C. [benzaldehyde]<sub>0</sub> =  $8.00 \times 10^{-2}$  M, [1]<sub>0</sub> =  $4.00 \times 10^{-3}$  M (a);  $2.00 \times 10^{-3}$  M (b);  $5.00 \times 10^{-4}$  M (c).



**Figure S16.** Fe<sup>IV</sup>=O formation (at 693 nm) versus time in the reaction of **1** with benzaldehyde in MeCN at 25 °C. [benzaldehyde]<sub>0</sub> =  $8.00 \times 10^{-2}$  M, [**1**]<sub>0</sub> =  $4.00 \times 10^{-3}$  M (**a**);  $2.00 \times 10^{-3}$  M (**b**);  $5.00 \times 10^{-4}$  M (**c**).



**Fig. S17.** Observed reaction rates versus benzaldehyde concentration in the reaction of **1** with benzaldehyde in MeCN at 25 °C.  $[\mathbf{1}]_0 = 2.00 \times 10^{-3}$  M, [benzaldehyde]\_0 =  $1.20 \times 10^{-1}$  M (**a**);  $8.00 \times 10^{-2}$  M (**b**);  $6.00 \times 10^{-2}$  M (**c**);  $2.00 \times 10^{-2}$  M (**d**).



**Figure S18.** Fe<sup>IV</sup>=O formation (at 693 nm) versus time in the reaction of **1** with benzaldehyde in MeCN at 25 °C.  $[1]_0 = 2.00 \times 10^{-3}$  M, [benzaldehyde]\_0 =  $1.20 \times 10^{-1}$  M (**a**);  $8.00 \times 10^{-2}$  M (**b**);  $6.00 \times 10^{-2}$  M (**c**);  $2.00 \times 10^{-2}$  M (**d**).



Fig. S19. Eyring plot of of 1 and benzaldehyde in MeCN under  $O_2$ .  $[1]_0 = 2.00 \times 10^{-3}$  M, [benzaldehyde]\_0=  $1.20 \times 10^{-1}$  M.

| N <sub>0</sub> | Т   | aldehyde             | [Fe] <sub>0</sub>     | [aldehyde] <sub>0</sub> | $k_{\rm obs}$              | $k_3$            | v                            |
|----------------|-----|----------------------|-----------------------|-------------------------|----------------------------|------------------|------------------------------|
|                | (K) |                      | $(10^{-3} \text{ M})$ | $(10^{-2} M)$           | $(10^{-3} \text{ s}^{-1})$ | $(M^{-2}s^{-1})$ | $(10^{-6} \mathrm{Ms}^{-1})$ |
| 1              | 298 | benzaldehyde         | 0.5                   | 8                       | 4.21                       | 32.48            | 2.11                         |
| 2              | 298 | benzaldehyde         | 1                     | 8                       | 4.39                       | 33.87            | 4.39                         |
| 3              | 298 | benzaldehyde         | 2                     | 8                       | 4.56                       | 35.18            | 9.12                         |
| 4              | 298 | benzaldehyde         | 4                     | 8                       | 4.57                       | 35.26            | 18.28                        |
| 5              | 293 | benzaldehyde         | 2                     | 8                       | 3.14                       | 24.23            | 6.28                         |
| 6              | 303 | benzaldehyde         | 2                     | 8                       | 6.28                       | 48.46            | 12.56                        |
| 7              | 308 | benzaldehyde         | 2                     | 8                       | 7.99                       | 61.65            | 15.98                        |
| 8*             | 298 | benzaldehyde         | 1                     | 8                       | 19.1                       | 29.48            | 19.10                        |
| 9              | 298 | benzaldehyde         | 2                     | 2                       | 1.12                       | 34.57            | 2.24                         |
| 10             | 298 | benzaldehyde         | 2                     | 6                       | 3.15                       | 32.41            | 6.30                         |
| 11             | 298 | benzaldehyde         | 2                     | 12                      | 6.58                       | 33.85            | 13.16                        |
| 12             | 298 | isobutyraldehyde     | 2                     | 4                       | 0.97                       | 14.96            | 1.94                         |
| 13             | 298 | 4-methylbenzaldehyde | 2                     | 4                       | 5.23                       | 80.71            | 10.46                        |
| 14             | 298 | 4-chlorobenzaldehyde | 2                     | 4                       | 0.55                       | 8.49             | 1.10                         |
| 15             | 298 | 4-cianobenzaldehyde  | 2                     | 4                       | 0.05                       | 0.69             | 0.093                        |

**Table S3.** The  $k_{obs}$ ,  $k_3$  and v values for the reaction of **1** with different benzaldehyde derivatives in MeCN in cuvette under air.

\*under O2 atmosphere

III. Fe<sup>IV</sup>=O mediated Baeyer-Villiger oxidation of cyclohexanones



**Fig. S20.** Dependence on the reaction rate values on the iron concentrations for the decay of **2**. in the presence of cyclohexanone MeCN at 25 °C:  $[PhIO]_0 = 4.00 \times 10^{-3}$  M,  $[cyclohexanone]_0 = 1.00 \times 10^{-1}$  M.



**Fig. S21.** Eyring plot of the reaction of **1** and cyclohexanone in MeCN.  $[\mathbf{1}]_0 = 2.00 \times 10^{-3}$  M,  $[PhIO]_0 = 4.00 \times 10^{-3}$  M,  $[cyclohexanone]_0 = 1.00 \times 10^{-1}$  M.

| N <sub>0</sub> | Т   | substrate                  | [Fe] <sub>0</sub>     | <b>[S]</b> <sub>0</sub> | $k_{ m obs}$               | $k_2$                                     | ν                           |
|----------------|-----|----------------------------|-----------------------|-------------------------|----------------------------|-------------------------------------------|-----------------------------|
|                | (K) |                            | $(10^{-3} \text{ M})$ | (M)                     | $(10^{-4} \text{ s}^{-1})$ | $(10^{-3} \text{ M}^{-1} \text{ s}^{-1})$ | $(10^{-7} \text{ Ms}^{-1})$ |
| 1              | 298 | cyclohexanone              | 0.5                   | 0.1                     | 1.59                       | 1.59                                      | 0.80                        |
| 2              | 298 | cyclohexanone              | 1                     | 0.1                     | 1.53                       | 1.53                                      | 1.53                        |
| 3              | 298 | cyclohexanone              | 1.5                   | 0.1                     | 1.44                       | 1.44                                      | 2.16                        |
| 4              | 298 | cyclohexanone              | 2                     | 0.1                     | 1.35                       | 1.35                                      | 2.70                        |
| 5              | 293 | cyclohexanone              | 2                     | 0.1                     | 0.97                       | 0.97                                      | 1.94                        |
| 6              | 303 | cyclohexanone              | 2                     | 0.10                    | 1.76                       | 1.76                                      | 3.52                        |
| 7              | 308 | cyclohexanone              | 2                     | 0.10                    | 2.18                       | 2.18                                      | 4.36                        |
| 8              | 298 | cyclohexanone              | 2                     | 0.15                    | 2.41                       | 1.60                                      | 4.82                        |
| 9              | 298 | cyclohexanone              | 2                     | 0.20                    | 3.02                       | 1.51                                      | 6.03                        |
| 10             | 298 | cyclohexanone              | 2                     | 0.25                    | 3.82                       | 1.53                                      | 7.64                        |
| 11             | 298 | 2-methyl-cyclohexanone     | 2                     | 0.10                    | 1.03                       | 1.03                                      | 2.06                        |
| 12             | 298 | 2-methyl-cyclohexanone     | 2                     | 0.15                    | 1.66                       | 1.10                                      | 3.32                        |
| 13             | 298 | 2-methyl-cyclohexanone     | 2                     | 0.20                    | 1.99                       | 1.00                                      | 3.98                        |
| 14             | 298 | 2-methyl-cyclohexanone     | 2                     | 0.25                    | 2.61                       | 1.04                                      | 5.22                        |
| 15             | 298 | 3-methyl-cyclohexanone     | 2                     | 0.10                    | 0.28                       | 0.28                                      | 0.56                        |
| 16             | 298 | 3-methyl-cyclohexanone     | 2                     | 0.15                    | 0.37                       | 0.25                                      | 0.74                        |
| 17             | 298 | 3-methyl-cyclohexanone     | 2                     | 0.20                    | 0.49                       | 0.25                                      | 0.98                        |
| 18             | 298 | 3-methyl-cyclohexanone     | 2                     | 0.25                    | 0.63                       | 0.25                                      | 1.25                        |
| 15             | 298 | 4-methyl-cyclohexanone     | 2                     | 0.10                    | 0.86                       | 0.86                                      | 1.71                        |
| 16             | 298 | 4-methyl-cyclohexanone     | 2                     | 0.15                    | 1.28                       | 0.86                                      | 2.56                        |
| 17             | 298 | 4-methyl-cyclohexanone     | 2                     | 0.20                    | 1.81                       | 0.91                                      | 3.62                        |
| 18             | 298 | 4-methyl-cyclohexanone     | 2                     | 0.25                    | 2.23                       | 0.89                                      | 4.46                        |
| 19             | 298 | 4-tert-butyl-cyclohexanone | 2                     | 0.10                    | 0.40                       | 0.40                                      | 0.80                        |
| 20             | 298 | 4-tert-butyl-cyclohexanone | 2                     | 0.15                    | 0.73                       | 0.48                                      | 1.46                        |
| 21             | 298 | 4-tert-butyl-cyclohexanone | 2                     | 0.20                    | 0.89                       | 0.45                                      | 1.78                        |
| 22             | 298 | 4-tert-butyl-cyclohexanone | 2                     | 0.25                    | 1.17                       | 0.47                                      | 2.34                        |

**Table S4.** The  $k_{obs}$  and  $k_2$  values for the reaction of **1** with cyclohexanone derivatives in MeCN in cuvette under air.