Hierarchical architectures of Co_3O_4 ultrafine nanowires grown on Co_3O_4 nanowires with fascinating electrochemical performance

Lei An^a, Li Yu^b, Yunjiu Cao^{a,c}, Wenyao Li^{a,d}, Kaibing Xu^a, Tao Ji^{a,c}, Rujia Zou^{a,e} and Junqing Hu^{*a}

^a State Key Laboratory for Modification of Chemical Fibers and Polymer Materials, College of Materials Science and Engineering, Donghua University, Shanghai 201620, China.

^b Ian Wark Research Institute, University of South Australia, Mawson Lakes, SA 5095, Australia.

^c School of Fundamental Studies ,Shanghai University of Engineering Science, Shanghai 201620, China.

^d School of Material Engineering, Shanghai University of Engineering Science, Shanghai 201620, China.

^e Center of Super-Diamond and Advanced Films (COSDAF), Department of Physics and Materials Science, City University of Hong Kong, Hong Kong.

E-mail: hu.junqing@dhu.edu.cn

Part I: Calculations

The specific capacitance (C) of the electrode was calculated from the discharge curves using the following formula¹:

$$C = \frac{I \times \Delta t}{m \times \Delta V}$$

where I (A), Δt (s), m (g), and ΔV (V) are the discharge current, discharge time consumed in the potential range of ΔV , mass of the active materials, and the potential windows, respectively.

The energy density (E) and power density (P) are calculated from the discharge curves using the following formula:

$$\mathbf{E} = \mathbf{Error!} \times C \times \Delta V^2$$
$$\mathbf{P} = \frac{\mathbf{E}}{\Delta \mathbf{t}}$$

1. J. Yan, E. Khoo, A. Sumboja and P. S. Lee. ACS Nano, 2010, 4, 4247.

Part II: Supplementary Figures

Fig S1 Low- and high- magnification SEM images of the Co-based intermediate.

Fig S2 XRD patterns of the as-prepared Co-based intermediate.

Fig S3 SEM image of the conventional Co_3O_4 nanowires.

Fig S4 CV curves of the conventional Co_3O_4 nanowires at different scan rates, respectively.

Fig S5 Galvanostatic charge-discharge curves of the Co_3O_4 nanowires@nanowires at different high current densities, respectively.

Fig S6 Galvanostatic charge-discharge curves of the conventional Co_3O_4 nanowires at different current densities, respectively.

Fig. S7 Different magnification SEM images of the hierarchical Co_3O_4 nanowires@nanowires on Ni foam after 10000 cycle CV test.

Table S1 A comparison of the capacitance for the Co_3O_4 nanowires@ultrafine nanowire electrode material with other reported Co_3O_4 materials based electrodes in previous literatures.

Electrode Materials	Specific Capacitance	Rate Capability	Ref.
Co ₃ O ₄ nanowires@	1640 F g ⁻¹ at 2mA cm ⁻²	66% retention from 2	This
ultrafine nanowires	(1640 F g ⁻¹ at 1.7 A g ⁻¹)	to 50 mA cm ⁻²	work
Co ₃ O ₄ nanoparticles	519 F g ⁻¹ at 0.5 mA cm ⁻²	25.8% retention from 0.5 to 10 mA cm ⁻²	18
Dendrite-like Co ₃ O ₄ nanostructures	207.8 F g ⁻¹ at 0.5 A g ⁻¹	36.1% retention from 0.5 to 6 A g ⁻¹	19
Mesoporous Co ₃ O ₄ nanocubes	350 F g ⁻¹ at 0.2 A g ⁻¹	45.7% retention from 0.2 to 2 A g ⁻¹	20
Hollow Co ₃ O ₄ boxes	278 F g ⁻¹ at 0.5 A g ⁻¹	63.3% retention from 0.5 to 5 A g ⁻¹	37
Co ₃ O ₄ nanowires	1217.4 F g ⁻¹ at 0.7 A g ⁻¹	57.5% retention from 0.7 to 20 A g ⁻¹	38
Flower-like Co ₃ O ₄ microspheres	541.9 F g ⁻¹ at 1 A g ⁻¹	54% retention from 0.7 to 20 A g ⁻¹	39
Nanonet-like Co ₃ O ₄	1084 F g ⁻¹ at 5 mA cm ⁻	62.1% retention from 5 to 100 mA cm ⁻²	40
	2		
Co ₃ O ₄ @MnO ₂ nanoflakes	675.9 F g ⁻¹ at 1 A g ⁻¹	26.8% retention from 1 to 10 A g ⁻¹	41
Co ₃ O ₄ @MnO ₂ nanoconch arrays	1183.6 F g ⁻¹ at 1 A g ⁻¹	51.6% retention from 1 to 10 A g ⁻¹	42
Co ₃ O ₄ nanowire@MnO ₂ ultrathin nanosheet	480 F g ⁻¹ at 2.67 A g ⁻¹	55.6% retention from 2.67 to 29.8 A g ⁻¹	43
Hybrid NiO/Co ₃ O ₄ architectures	193 F g ⁻¹ at 3 A g ⁻¹	60.1% retention from 3 to 8 A g ⁻¹	44
ZnO@Co ₃ O ₄ core/shell heterostructures	857.7 F g ⁻¹ at 2 mA cm ⁻ 2	63.4% retention from 2 to 20 mA cm ⁻²	45
Co ₃ O ₄ /RGO composites	518.8 F g ⁻¹ at 0.5 A g ⁻¹	47.6% retention from 0.5 to 10 A g ⁻¹	46
Co ₃ O ₄ /Carbon composites	400 F g ⁻¹ at 0.5 A g ⁻¹	37.5% retention from 0.5 to 5 A g ⁻¹	47
Co ₃ O ₄ nanoplates/ grapheme nanosheets	703.4 F g ⁻¹ at 0.625 A g ⁻¹	37.5% retention from 0.625 to 12.5 A g ⁻¹	48