Electronic Supplementary Material (ESI) for New Journal of Chemistry. This journal is © The Royal Society of Chemistry and the Centre National de la Recherche Scientifique 2016

> **Electronic Supplementary Information (ESI) for New Journal of Chemistry, The Royal Society of Chemistry**

Highly efficient removal of TiO₂ nanoparticles from aquatic bodies by silica microspheres impregnated Ca-alginate

Hirakendu Basu, Mehzabin Vivek Pimple, Rakesh Kumar Singhal

Analytical Chemistry Division

Bhabha Atomic Research Centre, Trombay, Mumbai -400085, India

E mail: rsinghal@barc.gov.in ;Tel:91-22-25592233 fax No 91-22-25505151

Evidence of the stability of the bead:

Fig: 6 months old Cal-Alg-SM beads

Fig: Dried and 6 months old Cal-Alg-SM beads

Sherrer analysis for the size determination of TiO₂ NP:

 $0.94 * \lambda$ $D_{p} = FWHM * Cos\theta$

Where, D_p = Average crystallite size, $\lambda = 1.54$ Å, $\theta =$ Bragg angle

From the most intense peak at the XRD of TiO₂ NP, the required parameters (FWHM, θ) were

obtained and $D_{\boldsymbol{p}}$ was calculated as follows:

20	FWHM	Size (nm)
25.5946	0.293	29.04

The effect of dose:

The effect of dose of sorbent was studied under the fixed concentration of TiO_2NP (100 µgmL⁻¹), pH 4-5 keeping the contact time at 8h. The result is given below. It shows that the percentage uptake initially increases up to dose rate of 5 mg g⁻¹ thereafter becomes almost constant. So dose rate of 5 mg g⁻¹ is used for most of the experiments.

Pore size distribution:

The following figures show the pore size distribution of silica microspheres (SM) and Cal-Alg-SM beads derived from BET isotherm (Instrument model: Surfer; Thermo Scientific).

Fig: Pore size distribution of silica microsphere

Fig: Pore size distribution of Cal-Alg-SM beads