Electronic Supplementary Material (ESI) for New Journal of Chemistry. This journal is © The Royal Society of Chemistry and the Centre National de la Recherche Scientifique 2015

1

Supporting Information

Plasma polyacrylic acid and hollow TiO₂ spheres modified with

rhodamine B for sensitively electrochemical sensing Cu(II)

Zhihong Zhang^{a,b*} Hongfei Ji^b, Shuai Zhang^{a,b}, Donglai Peng^b, Qixuan Fu^b, Minghua Wang^b,

Linghao He^b, Lingyu Yue^{a,b}

¹Henan Collaborative Innovation Center of Environmental Pollution Control and Ecological

Restoration,

²State Laboratory of Surface and Interface Science of Henan Province

Zhengzhou University of Light Industry, No. 166, Science Avenue, Zhengzhou 450001, P. R.

China

Corresponding author

*E-mail addresses: mainzhh@163.com

1. EIS Nyquist plot and equivalent circuit

The EIS spectrum was analyzed using Zview2 software. A nonlinear least-squares method was used to fit and determine the parameters of the elements in an equivalent circuit (**Fig. S1**). The Randles equivalent circuit, which consists of solution resistance (R_s), charge-transfer resistance (R_{et}), constant-phase element (CPE), and Warburg impedance (W_o), is shown in the inset of **Fig. S1**.

Z' / ohm

Fig. S1 EIS Nyquist plots and equivalent circuit

2. The FT-IR spectra of TiO2@PPAA composite deposited at 20W

Fig. S2 FT-IR spectra of TiO₂@PPAA nanocomposites deposited at 20 W for 1 min

3. The XPS spectra of TiO2@PPAA composite

Fig. S3 The survey scan spectra of $TiO_2@PPAA$ composite deposited at 20 W for 1 min

Table S1 Atomic percentage of TiO_2 @PPAA composite for fabrication developed the sensor for detection of Cu^{2+}

	Atomic			
Different steps	0			
-	C 1 <i>s</i>	O 1 <i>s</i>	N 1s	
TiO ₂ @PPAA	32.6	64.69	2.14	
TiO2@PPAA-EDC/NHS	69.92	13.13	16.95	
TiO ₂ @PPAA-RhB	52.4	44.53	3.07	

Table	S2	The	fitting	values	of th	e	Randles	Equivalent	Circuit	elements	for	the
asseml	bly p	proce	ss of <i>h</i> -	TiO ₂ @]	PPAA	-R	hB electi	ochemical s	sensor be	efore and a	after	the
detecti	ion c	of Cu ²	2+.									

Modified electrodes	$R_s(\Omega)$	$R_{et}(\Omega)$	CPE(µMho)/n
Au	594.8	50.21	1.95/0.982
<i>h</i> -TiO ₂ /Au	583.6	139.9	3.76/0.839
<i>h</i> -TiO ₂ @PPAA/Au	533.3	426.8	5.52/0.80
<i>h</i> -TiO ₂ @PPAA-EDC-NHS/Au	533.2	354.2	66.38/0.563
<i>h</i> -TiO ₂ @PPAA-RhB/Au	546.5	797.2	4.491/0.80
<i>h</i> -TiO ₂ @PPAA-RhB-Cu ²⁺ /Au	554.4	1510	2.415/0.857

_

4. The different developed sensor for detection Cu²⁺

Fig. S4 CV and Nyquist plots of *h*-TiO₂/Au (a-b), PPAA/Au (c-d) and *h*-TiO₂@PPAA (e-f) for directly detection of 1 pM Cu²⁺.

Fig. S5 The values of ΔR_{et} about the different modified electrodes with TiO₂, PPAA and TiO₂@PPAA toward the direct adsorption of Cu²⁺, respectively.

Fig. S6 The values of ΔR_{et} about the direct adsorption of Pb²⁺, Co²⁺, Mn²⁺, Ni²⁺, Zn²⁺, Mg²⁺, and Cu²⁺ using the TiO₂@PPAA nanofilm as the electrode materials.