Electronic Supplementary Information

Porous CuO nanostructure as reusable catalyst for oxidative degradation of organic water pollutants

Pangkita Deka, Ramesh C. Deka*and Pankaj Bharali*

Department of Chemical Sciences, Tezpur University, Napaam – 784 028, India

Submitted to New Journal of Chemistry

^{*} Corresponding authors: Tel.: +91 3712 275064; fax: +91 3712 267005/6

E-mail address: pankajb@tezu.ernet.in (P. Bharali) and ramesh@tezu.ernet.in (R. C. Deka).

Figure S1: Time dependent UV-visible spectra of MB (a) and MO (b) at room temperature, respectively. Conditions: [dye] = 5 mg/L, volume of dye solution = 10 mL, $H_2O_2 = 1 \text{ mL}$ and amount of catalyst = 3 mg.

Figure S2: Time dependent UV-visible spectra of MB (a) and MO (b) at 35 °C, respectively. Conditions: [dye] = 5 mg/L, volume of dye solution = 10 mL, $H_2O_2 = 1 \text{ mL}$ and amount of catalyst = 3 mg.

Figure S3: Time dependent UV-visible spectra of MB (a) and MO (b) at 65 °C, respectively. Conditions: [dye] = 5 mg/L, volume of dye solution = 10 mL, $H_2O_2 = 1 \text{ mL}$ and amount of catalyst = 1 mg.

Recyclability test: Methylene Blue (MB)

Figure S4: Time dependent UV-visible spectra of MB at 65 °C (a), plot of MB degradation rate (%) verses the reaction time (b) and plot of $ln(A_t/A_0)$ verses reaction time (c), respectively. Conditions: [dye] = 5 mg/L, volume of dye solution = 10 mL, H₂O₂ = 1 mL and amount of catalyst = 6 mg.

Cycle 1:

Figure S5: Time dependent UV-visible spectra of MB at 65 °C (a), plot of MB degradation rate (%) verses the reaction time (b) and plot of $ln(A_t/A_0)$ verses reaction time (c), respectively. Conditions: [dye] = 5 mg/L, volume of dye solution = 10 mL, H₂O₂ = 1 mL and amount of catalyst = 6 mg.

Figure S6: Time dependent UV-visible spectra of MB at 65 °C (a), plot of MB degradation rate (%) verses the reaction time (b) and plot of $ln(A_t/A_0)$ verses reaction time (c), respectively. Conditions: [dye] = 5 mg/L, volume of dye solution = 10 mL, H₂O₂ = 1 mL and amount of catalyst = 6 mg.

Figure S7: Time dependent UV-visible spectra of MB at 65 °C (a), plot of MB degradation rate (%) verses the reaction time (b) and plot of $ln(A_t/A_0)$ verses reaction time (c), respectively. Conditions: [dye] = 5 mg/L, volume of dye solution = 10 mL, H₂O₂ = 1 mL and amount of catalyst = 6 mg.

Recyclability test: Methyl Orange (MO)

Figure S8: Time dependent UV-visible spectra of MO at 65 °C (a), plot of MO degradation rate (%) verses the reaction time (b) and plot of $\ln(A_t/A_0)$ verses reaction time (c), respectively. Conditions: [dye] = 5 mg/L, volume of dye solution = 10 mL, H₂O₂ = 1 mL and amount of catalyst = 6 mg.

Cycle 1:

Figure S9: Time dependent UV-visible spectra of MO at 65 °C (a), plot of MO degradation rate (%) verses the reaction time (b) and plot of $ln(A_t/A_0)$ verses reaction time (c), respectively. Conditions: [dye] = 5 mg/L, volume of dye solution = 10 mL, H₂O₂ = 1 mL and amount of catalyst = 6 mg.

Cycle 2:

Figure S10: Time dependent UV-visible spectra of MO at 65 °C (a), plot of MO degradation rate (%) verses the reaction time (b) and plot of $ln(A_t/A_0)$ verses reaction time (c), respectively. Conditions: [dye] = 5 mg/L, volume of dye solution = 10 mL, $H_2O_2 = 1$ mL and amount of catalyst = 6 mg.

Cycle 3:

Figure S11: Time dependent UV-visible spectra of MO at 65 °C (a), plot of MO degradation rate (%) verses the reaction time (b) and plot of $ln(A_t/A_0)$ verses reaction time (c), respectively. Conditions: [dye] = 5 mg/L, volume of dye solution = 10 mL, $H_2O_2 = 1$ mL and amount of catalyst = 6 mg.

Cycle 4: