Electronic Supplementary Information (ESI)

Xanthurenic acid: A natural ionophore with high selectivity and sensitivity for potassium ions in aqueous solution

M. Raju,^a Tapasya J. Patel,^a Ratish R. Nair,^a and Pabitra B. Chatterjee^{*a,b}

^aAnalytical Discipline and Centralized Instrument Facility, CSIR-CSMCRI, Bhavnagar, Gujarat, India ^bAcademy of Scientific and Innovative Research, CSIR-CSMCRI, Bhavnagar, Gujarat, India.

Contents

Page No.

1. General procedure of fluorescence experiments	S 3
2. General procedure of fluorescence titrations	S 3
3. Determination of LOD from fluorescence titrations	S 3
Fig. S1. Absorption and emission spectra of xanthurenic acid (10 μ M).	S5
Fig. S2 pH titration profile of H ₃ L in absence and presence of K ⁺	S6
Fig. S3 . LOD determination from fluorescence titration data of H_3L (10 μ M) in presence of potassium salts.	S7
Fig. S4. Job's plot of H ₃ L with K-salts showing 2:1 stoichiometry monitored at 448 nm (emission) in presence of different concentrations of K^+ .	S8
Fig. S5. HR-MS spectrum of H ₃ L in the negative ion mode showing 2:1 binding stoichiometry of the ionophore with K^+ .	S9
Fig. S6 . Fluorescence responses of equimolar (10 μ M) H ₃ L and K ⁺ in the presence of 5-fold (50 equiv in case of Na ⁺) of other metal ions in water HEPES buffer.	S10
Table S1 . ¹ H NMR spectral data for H_3L in DMSO- d_6 with the successive addition of K ⁺ . Chemical shifts are against internal TMS.	S 11

1. General procedure of fluorescence experiments

The fluorescence experiments were carried out in aqueous HEPES (50 mM) buffer at pH 7.2. 20 μ M metal perchlorate stock solutions of 100 mL were prepared in H₂O. Final test solutions were prepared by taking 1 mL of the above 20 μ M metal stock solution and 1 mL of 20 μ M H₃L solution to further yield 10 μ M each of H₃L and metal solutions. The resolution was set at 1 nm. The excitation was given at 360 nm and the emission spectrum was collected at 448 nm.

2. General procedure of fluorescence titrations

Stock solutions for fluorescence titrations were prepared in aqueous HEPES (50 mM) buffer at pH 7.2. The stock concentration of H₃L was kept constant at 20 μ M and the stock solutions of potassium perchlorate were prepared by increasing its concentrations from 0.01 μ M to 200 μ M in water. The binding constant for H₃L was determined from the following equation and fitted in Origin Pro 8.1 software:

$$\mathbf{F} = \mathbf{F}_{0} + \frac{\mathbf{F}_{max} - \mathbf{F}_{0}}{2} \left\{ \left(\mathbf{1} + \frac{[M]}{C_{L}} + \frac{\mathbf{1}}{C_{L}K} \right) - \sqrt{\left(\mathbf{1} + \frac{[M]}{C_{L}} + \frac{\mathbf{1}}{C_{L}K} \right)^{2} - \mathbf{4} * \frac{[M]}{C_{L}}} \right\},\$$

where F_0 is the emission intensity of H_3L in absence of potassium salt, F is the emission intensity of H_3L in presence of different concentrations of potassium salts and F_{max} is the emission intensity of H_3L when the complete saturation is reached. All experiments were performed in triplicate. The data shown in **Fig. 3b** is the average of three values.

3. Determination of LOD from fluorescence titrations

The detection limit of $H_{3}L$ for K⁺ was determined from the following equation:

The LOD is (3 σ /S) (R2 = 0.998, **Fig. S3**.). Here σ is the standard deviation and S is the slope of the calibration curve. Plotting fluorescence against [K⁺] generates **Fig. S3**. From the **Fig. S3** we calculated slope = 1.3 x 10⁸ and the standard deviation was found to be 2.296. Therefore, the LOD value was measured to be 0.53 nM of K⁺.

$$LOD = \frac{3\sigma}{S} = 3\frac{\sqrt{\frac{\sum(F - Fi)^2}{n - 1}}}{S}$$

In this case, n = 10, F is the fluorescence of H_3L .

Fig. S1. Absorption and emission spectra of xanthurenic acid (10 μ M) in aqueous HEPES buffer.

Fig. S2. pH titration profile of H_3L in absence and presence of K^+ . The data points represent the average of three values and the error bars indicate the standard deviations.

Fig. S3. Limit of detection (LOD) determination from fluorescence titration data of H₃L (10 μ M) in presence of potassium salts. The data points represent the average of three values and the error bars indicate the standard deviations.

Fig. S4. Job's plot of H_3L with K-salt showing 2:1 stoichiometry monitored at 448 nm (emission) in presence of different concentrations of K⁺. The data points represent the average of three values and the error bars indicate the standard deviations.

Fig. S5. HR-MS spectrum (in the negative ion mode) of H_3L in presence of K⁺ showing 2:1 binding stoichiometry of the ionophore with K⁺.

Fig. S6. Fluorescence responses of equimolar (10 μ M) **H**₃L and K⁺ in the presence of 5-fold (50 equiv in case of Na⁺) of other metal ions in water HEPES buffer.

Table S1. ¹H NMR spectral data for **H₃L** in DMSO- d_6 with the successive addition of K⁺. Chemical shifts are against internal TMS.

Sample	δ _N +-н, ppm	δ н7, ррт	δн6, ppm	δн5, ppm	б нз, ррт
2 mmol H ₃ L	10.68	7.55	7.31	7.15	6.94
2 mmol H ₃ L : 0.5 mmol K ⁺	10.71	7.55	7.31	7.15	6.96
2 mmol H ₃ L : 0.75 mmol K ⁺	10.75	7.55	7.31	7.15	6.97
2 mmol H ₃ L : 1 mmol K ⁺	10.77	7.55	7.31	7.15	6.97
2 mmol H ₃ L : 1.5 mmol K ⁺	10.77	7.55	7.31	7.15	6.97
2 mmol H ₃ L : 2 mmol K ⁺	10.77	7.55	7.31	7.15	6.97

¹H NMR spectrum and assignments of different protons of $H_{3}L$ in DMSO- d_{6} .