Electronic Supplementary Material (ESI) for New Journal of Chemistry. This journal is © The Royal Society of Chemistry and the Centre National de la Recherche Scientifique 2015

25/09/2015 Benay and Wipff

Liquid-Liquid Extraction of Alkali Cations by 18-Crown-6: Complexation and Interface Crossing Studied by MD and PMF Simulations

by Gael Benay and Georges Wipff *

Laboratoire MSM, UMR 7177, Institut de Chimie, 1 rue B. Pascal, 67000 Strasbourg, France. wipff@unistra.fr

Electronic Supplementary Information

Table S1: Force field parameters: alkali ion parameters and atomic polarizabilities of Pic⁻, Cl⁻ ions, 18C6 and solvents used for the "POL" model. Sets of 18C6 charges.

Ion	R* (Å)	ε (kcal / mol)	α (Å ³)	Ref.
Na ⁺	1.4502	0.1		L. X. Dang, J. Am. Chem. Soc., 117 (1995) 6954
Na ⁺ POL	1.3350	0.1	0.240	L. X. Dang, J. Phys. Chem. A, 108 (2004) 9014
K^+	1.8700	0.1		L. X. Dang, J. Am. Chem. Soc., 117 (1995) 6954
K ⁺ POL	1.7701	0.1	0.830	TM. Chang, L. X. Dang, J. Phys. Chem. B, 101
				(1997) 10518
Cs ⁺	2.1798	0.1		L. X. Dang, J. Am. Chem. Soc., 117 (1995) 6954
$Cs^+ POL$	2.1501	0.1	2.440	TM. Chang, L. X. Dang, J. Phys. Chem. B, 101
				(1997) 10518

Alkali ion parameters

Atomic polarizabilities of Pic⁻, Cl⁻ ions, 18C6 and solvents used for the "POL" model.

Atom type	α (Å ³)	q (e)
C (18C6; CHCl ₃)	0.878^{a}	
H_C (18C6; CHCl ₃)	0.135 ^a	
N (Pic ⁻)	0.530 ^a	
O (18C6; Pic ⁻)	0.465 ^a	
C _{Pic} (Pic ⁻)	0.360 ^b	
H _{Pic} (Pic ⁻)	0.167 ^b	
Cl (CHCl ₃ ; Cl ⁻)	1.910 ^c	
O (H ₂ O POL3)	0.528 ^a	-0.730
H (H ₂ O POL3)	0.170 ^a	0.365

a: Caldwell J.W. and Kollman P.A., J. Phys. Chem., 1995, 99, 6208

b: Wang, J.; Cieplak, P.; Kollman, P. A., J. Comput. Chem., 2000, 21, 1049

c: Chang, T.-M.; Dang, L. X.; Peterson, K. A., J. Phys. Chem. B, 1997, 101, 3413

d: Dang, L. X., Chang, T.-M., J. Chem. Phys. 119 (2003) 9851-9857

Atomic charges of 18C6 and corresponding dipole moment of dimethyl ether (in D).

Model	$q_{\rm C}$	$q_{\rm H}$	qo	q _M	$\mu_{MeOMe}{}^{a}$
18C6(-0.4)	0.244	-0.021	-0.406	+1.000	1.45
18C6(-0.5)	0.300	-0.025	-0.500	+1.000	1.79
18C6(-0.6)	0.360	-0.030	-0.600	+1.000	2.15
18C6(-0.34) ^b	0.086	0.042	-0.340	+1.000	1.43
18C6(-0.30) ^c	0.089	0.032	-0.305	+1.000	1.26
$18C6(+0.4)/M(+0.6)^{d}$	-0.055	0.093	-0.198	+0.618	

a: Experimental value: 1.31 D; QM value (HF/6-31G(d,p): 1.52 D;

b: ESP HF/6-31G(d,p) charges on 18C6.

c: ESP DFT/6-31G(d,p) charges on 18C6.

d: ESP DFT/6-31G(d,p) charges on the whole complex.

Table S2: Complexation of M^+ by 18C6 (" D_{3d} " ^a) in the gas phase: complexation energy E_c , enthalpy ΔH , and free energy ΔG (kcal/mol). Average M-O distances. QM (Gaussian 09 software) and AMBER results.

\mathbf{M}^+	Na ⁺	Na ⁺ Pic ⁻	\mathbf{K}^{+}	K ⁺ Pic ⁻	Cs ^{+ b}	Cs ⁺ Pic ^{-b}
QM HF/6-31G(d,p)						
E _c	-87.3		-69.0		-43.6	
ΔG	-77.7		-56.5		-32.7	
ΔΗ	-85.7		-68.8		-42.9	
q _M (Mulliken)	0.71		0.80		0.89	
q ₀ (Mulliken)	-0.67		-0.68		-0.70	
<d<sub>M-O> (Å)</d<sub>	2.700		2.814		3.131	
QM HF/6-311++G(d,p)						
Ec	-84.5		-70.2		-48.3	
ΔG	-74.8		-57.7		-37.2	
ΔΗ	-82.8		-69.9		-47.5	
QM DFT/6-31G(d,p)						
Ec	-83.3	-33.2	-70.5	-31.5	-34.6	-13.6
ΔG	-74.4		-59.6		-23.7	
ΔΗ	-81.4		-69.0		-33.4	
$q_{\rm M}$ (ESP)	0.66	0.41	0.62	0.43	0.78	0.53
q _O (ESP)	-0.25	-0.20	-0.20	-0.18	-0.20	-0.20
$< d_{M-O} > (Å)$	2.769		2.807		3.149	
QM DFT/6-311++G(d,p)						
E_c	-82.4		-70.3		-47.9	
ΔG	-73.5		-59.4		-37.4	
ΔΗ	-80.6		-68.7		-50.3	
$\mathbf{AMBER} \ \mathbf{q_0} \ \textbf{-0.4} \qquad \mathbf{E_c}$	-56.5 31.4% °		-49.5 29.6% °		-39.8 16.9% °	
AMBER $\mathbf{q}_0 \cdot 0.4 + \text{POL} \mathbf{E}_c$	-66.5 19.3% °		-59.2 15.8% ^c		-48.3 0.8% ^c	
$\mathbf{AMBER} \ \mathbf{q_0} \ \textbf{-0.5} \qquad \qquad \mathbf{E_c}$	-68.2 17.2% ^c		-61.1 13.1% ^c		-49.7 3.7% ^c	
AMBER qo -0.6 E _c	-79.3 3.8% °		-72.4 3.0% ^c -75.8 ^d		-59.8 24.8% ^c	
AMBER \mathbf{q}_0 -0.34 ° \mathbf{E}_c	-63.7 22.7% ^c		-56.7 19.3% ^c		-46.1 3.7% °	
AMBER q_0 -0.34 +POL ^e E_c	-73.3 11.0% ^c		-66.1 6.0% ^c		-54.5 13.8% [°]	
$AMBER q_0 - 0.30^{\text{ f}} \qquad E_c$	-56.1 31.9% °		-49.2 30.0% °		-39.8 16.9% °	

a: Conformation of 18C6 complexed and uncomplexed.

b: Cs^+ sits in "perched" position over the ring and is described by a SDD basis set with the Stuttgart/Dresden ECPs.

c: % difference relative to E_c at the QM DFT/6-311++G(d,p) level.

d: Cheatham's M⁺ parameters: Joung, I. S., Cheatham III, T. E., J. Phys. Chem. B, 2008, 112, 9020.

e: ESP HF/6-31G(d,p) charges on 18C6.

f: ESP DFT/6-31G(d,p) charges on 18C6.

Table S3: Dissociation $PMF_{0.01+t}$ of $18C6/M^+ X^-$ complexes (sampling time *t* in ns). Free energy difference ΔA_{CD} (in kcal / mol) between complexed and decomplexed states in water and at interface. Corresponding "selectivities" $\Delta \Delta A_{CD}$

			t	Na ⁺	K ⁺	Cs ⁺	Selectivity		
	M^+						$\Delta\Delta\Delta A_{CD}$	Order	
		q _O					K/Na Cs/KNa/Cs		
In	In water M ⁺ Cl ⁻								
		0.4	0.16	6.2	6.0	5.1	+0.2 +0.9 -1.1	$N_0 > K > C_0$	
		-0.4	0.5	4.6	4.0	2.8	+0.6 +1.2 -1.8	Na > K > Cs	
		0.5	0.16	5.0	8.1	3.5	-3.1 +4.6 -1.5	$V > N_0 > C_0$	
	(CDC/E)	-0.5	0.5	6.0	8.8	4.3	-2.8 +4.5 -1.7	K > Na > Cs	
	(SPC/E)	-0.6	0.16	8.4	9.1	5.0	-0.7 +4.1 -3.4	K > Na > Cs	
			0.5	6.6	8.3	4.4	-1.7 +3.9 -2.2		
		0.24 a	0.5	6.4	7.9	3.3	-1.5 +4.6 -3.1	K > Na > Cs	
		-0.34	3.0	6.0	7.4	3.4	-1.4 +4.0 -2.6	K > Na > Cs	
		-0.4+POL	0.5	3.3	8.5	4.2	-2.8 +1.4 +1.4	$K > C_S > Na$	
	(TIP3P)	-0.6	0.5	7.0	11.0	5.2	-4.0 +5.8 -1.8	K > Na > Cs	
		-0.6 Ch. ^b	0.5	5.2	10.7	8.3	-5.5 +2.4 +3.1	$V > C_2 > N_2$	
		Exp. ^c		1.1	2.8	1.3	-1.7 +1.5 +0.2	K = CS = INd	
At the interface M ⁺ Pic ⁻									
	CHCl ₃ /	-0.34 ^c	0.5	5.1	7.3	6.2	-2.2 +1.1 +1.1	$K > C_S > Na$	
	SPC/E								

a: ESP HF 6-31G(d,p) charges on 18C6.

b: Cheatham's parameters.

c: Experimental $-\Delta G_c$ decomplexation energy.

25/09/2015 Benay and Wipff

Table S4: Analysis of 18C6/ M⁺ complexes in water and at interface: M⁺...O(18C6) and M⁺...X⁻ distances (in Å), hydration number of M⁺, n_{+/-} number of g⁺ \leftrightarrow g⁻ interconversions of OC-CO dihedrals, and interaction energies (in kcal/mol) between 18C6, M⁺ and Water. Averages during 2 ns except when otherwise noted.^a See also Figures S7 to S9.

		Na⁺	K	Cs⁺
In Wate	er			
18C6(-0.6)	d _{M-O(18C6)}	2.6 (x4), 3.2 (x2)	3.0 (x6)	3.2 (x6)
	d _{M-Cl}	14.5 ±3.9	14.6 ±3.5	13.0 ±4.5
	$N_{Water}(M^{+})$	2.1 ± 0.3	2.6 ±0.7	3.5 ±1.1
	n _{+/-}	70	28	9
	E _{18C6/M}	-86 ± 6	-70 ± 5	-62 ± 6
	E _{18C6/Wat}	-30 ± 7	-33 ± 7	-41 ± 9
	E _{M/Wat}	-62 ± 10	-48 ± 10	-36 ± 18
18C6(-0.4) POL	d _{M-O(18C6)}	2.9 (x6)	2.9 (x6)	$3.3 (x6)^{a}$
	d _{M-CI}	14.7 ±3.4	13.8 ±4.2	14.0 ± 3.3^{a}
	$N_{Water}(M^{+})$	2.0 ±0.1	2.1 ±0.5	3.5 ±0.9 ^a
	n _{+/-}	18	4	6 ^a
18C6(-0.34)	d _{M-O(18C6)}	2.8 (x6)	3.0 (x6)	3.2 (x6)
	d _{M-CI}	16 ±3	15 ±3	15 ±3
	$N_{Water}(M^{+})$	2.0 ± 0.1	2.7 ±0.5	3.5 ±0.7
	n _{+/-} conversions	61	9	0
	E _{18C6/M}	-67 ± 3	-53 ± 3	-47 ± 3
	E _{18C6/Wat}	-16 ± 5	-21 ± 5	-27 ± 6
	E _{M/Wat}	-74 ± 10	-63 ± 9	-53 ± 9
At the interface				
18C6(-0.34)	d _{M-O(18C6)}	2.8 (x6)	3.0 (x6)	3.2 (x6)
	d _{M-Pic}	6.9 ± 1.0	20 ± 11	13.3 ±4.7
	$N_{Water}(M^{+})$	2.1 ±0.3	2.1 ±0.7	3.0 ± 0.8
	n _{+/-}	26	0	0
	E _{18C6/M}	-67 ± 4	-57 ± 3	-47 ± 3
	E _{18C6/Wat}	0 ± 5	-2 ± 4	-2 ± 3
	E _{M/Pic}	-44 ± 4	-23 ± 17	-30 ± 11
	E _{M/Wat}	-60 ± 10	-61 ± 20	-54 ± 14

^a: Average over 1 ns since M⁺ decomplexes afterwards.

Figure S1: Complexation of K^+ Cl⁻ by 18C6(-0.6) in SPC/E water: cumulated view of the complex (C in green, O in red, K in purple; recentered on the mean plane of O₁, O₇ and O₁₃ oxygens) at different steps of PMF_{0.01+0.16}, PMF_{0.01+0.5} and PMF_{0.01+3.0}.

d _{K-CM(18C6)}	PMF _{0.01+0.16}	PMF _{0.01+0.5}	PMF _{0.01+3.0}		
0.9 Å					
2.5 Å					
8.3 Å	x				

The Note that along a "rapid" PMF (for instance $PMF_{0.01+0.08}$ or $PMF_{0.01+0.16}$) M⁺ always sits on top of a single face of the crown. Along a "long" PMF ($PMF_{0.01+3}$) it explores the two faces of the crown at long distances (d > 8 Å), while being restrained at a single face at shorter distances, thereby causing some entropy penalty.

Figure S2: Complexation PMF of K^+ Cl⁻ by 18C6(-0.4) in SPC/E water: association (in blue) and dissociation (in red) pathways. Free energy curves (ΔA in kcal / mol, as a function of the *d* distance in Å) for different sampling times.

Figure S3: Complexation of K⁺ Cl⁻ by 18C6 in SPC/E water: association or dissociation PMF_{0.01+0.5} with different charges. From top to bottom: (i) Free energy curves (ΔA in kcal / mol, as a function of the *d* distance in Å) and binding energies ΔG_{ass} and ΔG_{diss} . (ii) Average energy components as a function of the *d* distance. Energies for the C (complexed) and D (decomplexed) states from the "diss" and "ass" pathways. (iii) Typical structures along the Association and Dissociation PMFs (at K-CM(18C6) distances of 0.7, 1.3 and 1.7 Å, respectively). PMFs results with the three cations and PMF_{0.01+0.016} sampling are shown in Figure S4.

Figure S4: Complexation of M^+ Cl⁻ by 18C6 in SPC/E water: dissociation PMF_{0.01+0.16} with different charges. Free energy curves (ΔA in kcal / mol, as a function of the *d* distance in Å) for Na⁺ to Cs⁺ cations.

Figure S5: Complexation $PMF_{0.01+0.5}$ of Na⁺ to Cs⁺ chlorides by 18C6(-0.6) in SPC/E water. From top to bottom: (i) Free energy curves (ΔA in kcal / mol, as a function of the *d* distance in Å). (ii) Snapshots of the complexed and decomplexed states.

(iii to v): Analysis as a function of the *d* distance: (iii) Curves of energy components, and average energies for Complexed and Decomplexed states. (iv) Number of H_2O molecules coordinated to M^+ . (v) The six OC-CO dihedrals of 18C6 along the PMF. Results with other models are shown in Figure S6.

Figure S6: Dissociation PMF_{0.01+0.5} of 18C6/ M⁺ X⁻ complexes in water. (i) Free energy curves (Δ A in kcal / mol, as a function of the *d* distance in Å) with three models: 18C6(-0.6) (red), 18C6(-0.34) (blue) and POL (green). Snapshots along the PMF ("POL" model) at several *d* distances : (ii) $d \approx 0$ Å (complexed state); (iii) $d \approx 2$ Å; (iv) $d \approx 8$ Å (decomplexed state).

Figure S7: Dynamics of $18C6(-0.6)/M^+$ Cl⁻ complexes in SPC/E water. From top to bottom: (i) Snapshots after 2 ns. Time evolution of distances (in Å) (ii) M-O(18C6), (iii) M-Cl. (iv) Time evolution of: number of water molecules coordinated to M, (v) of OC-CO dihedrals. (vi) Energy components analysis (in kcal / mol, averages over the last 1.5 ns).

Figure S8: Dynamics of $18C6(-0.34)/M^+$ Cl⁻ complexes in SPC/E water. From top to bottom: (i) snapshots. Time evolution of distances (in Å) (ii) M-O(18C6), (iii) M-Cl. Time evolution of (iv) number of water molecules coordinated to M, (v) OC-CO dihedrals. (vi) Energy components analysis (in kcal / mol; averages over the last 1.5 ns).

Figure S9: Dynamics of $18C6(-0.4)/M^+$ Cl⁻ complexes in POL3 water ("POL model"). From top to bottom: (i) snapshots of the complexes. Time evolution of distances (in Å) of (ii) M-O(18C6), (iii) M-Cl. Time evolution of (iv) number of water molecules coordinated to M, (v) of OC-CO dihedrals.

Figure S10: Dynamics of $18C6(-0.34)/M^+$ Pic⁻ complexes at the chloroform / water (SPC/E) interface. From top to bottom: (i) snapshots. Time evolution of (ii) distances (in Å) M-O(18C6), (iii) of M-Pic; (iv) of the number of H₂O molecules coordinated to M⁺, (v) of OC-CO dihedral angles.

Figure S11. "Transfer" $PMF_{0.5+1.0}$ of K⁺ Pic⁻ across the interface. From top to bottom: free energy curve (ΔA in kcal / mol, as a function of the *z* distance in Å) and snapshots at the O, I and W positions.

Figure S12: Transfer PMF_{0.5+1.0} of 18C6 across the chloroform / water interface. Free energy curves (ΔA in kcal / mol, as a function of the *z* distance in Å) with different charge models.

a) G. Benay and G. Wipff J. Phys. Chem. B 2014, 118, 13913.

Figure S13. Transfer PMF_{0.5+1.0} of the 18C6(0.6)/M⁺ Pic⁻ complex across the chloroform / water interface. Free energy curves (ΔA in kcal / mol, as a function of the *z* distance in Å) and snapshots at the O, I and W positions.

Figure S14: Transfer PMF of $18C6/K^+$ Pic⁻ across the chloroform / water interface. Free energy curves (ΔA in kcal / mol, as a function of the *z* distance in Å) and snapshots at the O, I and W positions. Comparison of four models.

^a 18C6(-0.6) charge set, and +1 charged K⁺

^b ESP charges on the whole $18C6/K^+$ complex.

Figure S15: 30 K⁺ 18C6 Pic⁻ species at the interface (18C6(-0.4) POL model). Zooms from Figure 8. (ii) Snapshot of the solvent box after 5 ns of dynamics; (iii) K^{+...}Interface distance (in Å) for the eleven complexes (color coded and labelled from 1 to 11) as a function of time (in ns), starting from the time of their formation along the dynamics (excluding the complex preformed at 0 ns)

Figure S16: Views of the interfacial surface with 30 K⁺ 18C6 Pic⁻ species (POL force field). The interface is shown "horizontally" with the water phase either below (left side) or on top (right side). Line 1: water surface; line 2: chloroform surface. The surface of a given liquid L is defined by the z_{max} positions of the L molecules that are not "isolated", but connected to the bulk L via other L molecules.