Supporting Information for

A photostable fluorescent probe for rapid monitoring and tracking trans membrane process and mitochondrial fission and fusion dynamics

Yong Liu^a, Fangfang Meng^a, Yonghe Tang^a, Xiaoqiang Yu^{b*}, Weiying Lin^{a*}

a* Institute of Fluorescent Probes for Biological Imaging, School of Chemistry and Chemical

Engineering, School of Biological Science and Technology, University of Jinan, Jinan,

Shandong 250022, P. R. China.

Tel: +86-531-82769031

Fax: +86-531-82769031

E-mail: weiyinglin2013@163.com

b* Center of Bio & Micro/Nano Functional Materials, State Key Laboratory of Crystal

Materials, Shandong University, Jinan, 250100, PR China.

Tel: +86-531-88366418

Fax: +86-531-883664263

Table of contents

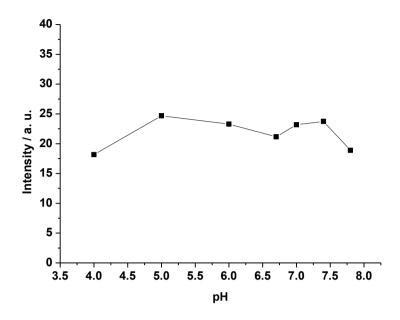
Page

1.	Synthetic route	S 3-S4
2.	Table S1	S5
3.	Fig. S1	S6
4.	Fig. S2	S7
5.	Fig. S3	S8
6.	VideoS1-S4	S9
7.	Spectral Characterization	S10-12
8.	References	S13

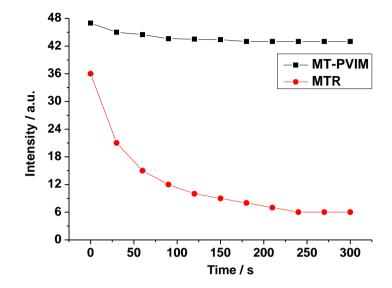
1. Synthetic route, experimental details and characterization of MT-PVIM.

N-(2-dodecane)-4-methylpyridinium iodide (1): 0.05 mol of 4-picoline and 0.055mol 1-iodododecane were mixed and stirred for 4h, thereafter refluxed for 2 h. After cooling and filtrating, the final product were washed with ether. *N*-(2-dodecane)-4-methylpyridinium iodide: Light red powder, yield 90%. ¹H NMR (400 MHz, DMSO- d_6), δ (ppm): 9.05 (d, *J* = 8.0 Hz, 2H), 8.05 (d, *J* = 8.0 Hz, 2H), 4.60 (t, *J* = 8.0 Hz, 2H), 2.64 (s, 3H), 1.92 (m, 2H), 1.28 (m, 6H), 0.86 (t, *J* = 6.0 Hz, 3H).

Synthesis of (E)-5-(2-(Pyridin-4-yl) vinyl)-1H-indole-3-carbaldehyde (3):


5-Bromo-1*H*-indole-3-carbaldehyde **2** (5 mmol) was added to a high pressure tube with a mixture of palladium(II) acetate (15 mg), tri-*o*-tolylphosphine (150 mg) and then to which was added the solvent pair (triethylamine 14 mL /tetrahydrofuran 42 mL) and 4-vinylpyridine (2 mL). The tube was sealed after bubbling for 15 min with nitrogen. After keeping the system under ~ 108 °C for three days, the precipitate was collected and washed with water and dichloromethane. The title product was obtained as a yellow solid, yield 55%. ¹H NMR (300 MHz, DMSO-*d*₆), δ (ppm): 12.21 (s, 1H), 9.97 (s, 1H), 8.53 (d, *J* = 6.0 Hz, 2H), 8.33 (d, *J* = 12.9 Hz, 2H), 7.70 (d, *J* = 16.5 Hz, 1H), 7.64 (dd, *J* = 8.4 Hz, 1.5 Hz, 1H), 7.60 (d, *J* = 6.0 Hz, 2H), 7.54 (d, *J* = 8.4 Hz, 1H), 7.19 (d, *J* = 16.2 Hz, 1H).

Synthesis of MT-PVIM: The condensation between **3** (1.45mmol) and N-(2-butyl/hexyl)-4-methylpyridinium iodide (1.57 mmol) happened in methanol with about four drops of piperidine. The mixture was stirred at 70 °C for 4 h and then a precipitate formed. This precipitate was filtered and washed with dichloromethane and little methanol as a red powder, which was then recrystallized from methanol twice. The compound **MT-PVIM**


was obtained in 60 % yield, respectively. Characterization data for **MT-PVIM**: ¹H NMR (400 MHz, DMSO-d6), δ (ppm): 12.07 (s, 1H), 8.82(d, J = 6.8 Hz, 2H), 8.56 (d, J = 5.9 Hz, 2H), 8.41 (s, 1H), 8.29 (d, J = 16.2 Hz, 1H), 8.18 (d, J = 6.8 Hz, 2H), 8.00 (s, 1H), 7.73~7.54 (m, 5H), 7.35 (dd, J = 56.8, 16.3 Hz, 2H), 4.43 (t, J = 7.3 Hz, 2H), 1.92~1.90 (m, 2H), 1.26 (m, 18H), 0.84 (t, J = 6.7 Hz, 3H). 13C NMR (300 MHz, DMSO-d6), δ (ppm): 155.37, 150.98, 145.71, 144.38, 138.70, 137.06, 135.24, 133.77, 130.63, 126.34, 124.82, 122.97 (2C), 121.53, 120.90, 118.25, 114.99, 113.99, 60.07, 32.23, 31.40, 29.94 (2C), 29.83, 29.73, 29.64, 29.32, 26.39, 23.02, 14.88. HRMS (m/z): [M-I]⁺. Calcd for C₃₄H₄₂IN₃: 492.34; found, 492.34.

2. Table S1. Probes of real-time image or track mitochondria

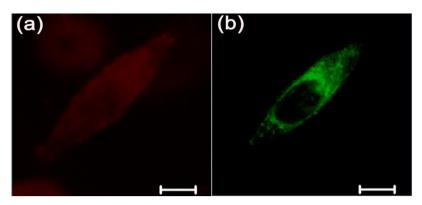
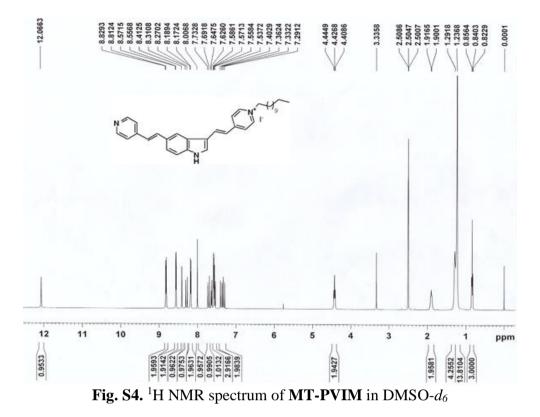
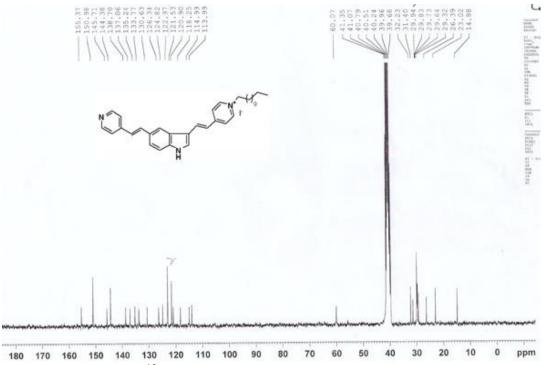

Mitochondria probe MitoTracker	Structures of mitochondria probe	Time of enter cell and real-time image mitochondria	Can or can not track mitochondrial Fission and Fusion Dynamics No	Reference
Red (MTR)		13 11111	NO	mitochondrial probe
CMT-red	N Pha Br Br	30 min	No	Ref.1
NPA-TPP		30 min	No	Ref.2
TPE-TPP	Phys Br Br Phys	1.5 h	No	Ref.3
JC-1		30min	Yes	Ref.4
Rhodamine 123		30min	Yes	Ref.5
Green fluorescent proteins (GFP)		Plasmid transfection	Yes	Ref.6
Some proteins : CFP-Bax (red), YFP-Drp1	protein	Plasmid transfection	Yes	Ref.7

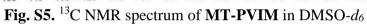
Fig. S1. Intensity of **MT-PVIM** (2 μ M) in acetonitrile-Tris/HCl buffer solution at different pH value. Excitation wavelength: 488 nm.

Fig. S2. Relative intensities of **TP-PMVC** (2 μ M) and MTR (2 μ M) in SiHa cells under successive irradiation at different times. **TP-PMVC:** $\lambda_{ex} = 488$ nm, $\lambda_{em} = 499-560$ nm; MTR: $\lambda_{ex} = 561$ nm, $\lambda_{em} = 570-630$ nm

Fig. S3. Fluorescent images of CCCP (10 μ M) treated SiHa cells stained with (a) MTR (250 nM) for 20 min and (b) **MT-PVIM** (3 μ M) for 3 min. Excitation wavelength: 561 nm (for MTR) and 488 nm (for **MT-PVIM**).


6. Video S1: The process that the probe **MT-PVIM** quick enters cell and illuminates cell membrane and mitochondria.


7. Video S2: Fusion and fission of mitochondria. Irradiation time: 30.98 s/scan. Scale bar = $10 \mu m$.


8. **Video S3:** Fluorescent images of living SiHa cells stained with **MT-PVIM** (3 μ M) as increasing scan time. Excitation wavelength: 488 nm; emission filter: 499–560 nm; irradiation time: 30.98 s/scan.

9. Video S4: Fluorescent images of CCCP (20 μ M) treated living SiHa cells stained with **MT-PVIM** (3 μ M) as increasing scan time. Excitation wavelength: 488 nm; emission filter: 499–560 nm; irradiation time: 30.98 s/scan.

10. Characterization

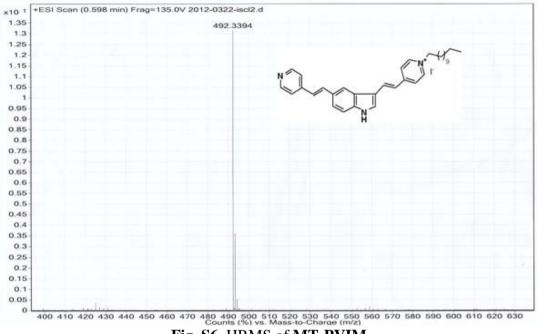


Fig. S6. HRMS of MT-PVIM

Notes and references

- 1. A. R. Sarkar, C. H. Heo, H. W. Lee, K. Hee Park, Y. H. Suh and H. M. Kim, *Anal. Chem.*, 2014, **86**, 5638–5641.
- 2. S. Huang, R. Han, Q. Zhuang, L. Du, H. Jia, Y. Liu and Y. Liu, *Biosens. Bioelectron.*, 2015, 71, 313–321
- C. W. T. Leung, Y. Hong, S. Chen, E. Zhao, J. W. Y. Lam and B. Z. Tang, J. Am. Chem. Soc., 2013, 135, 62–65.
- 4. R. Rizzuto, A. W. Simpson, M. Brini and T. Pozzan, *Nature.*, 1992, **358**, 325-327.
- 5. L. V. Johnson, M. Walsh and L. B. Chen, PNAS, 1980, 77, 990-994
- 6. R. Rizzuto, P. Pinton, W. Carrington, F. S. Fay, K. E. Fogarty, L. M. Lifshitz, R. A. Tuft and T. Pozzan, *Science.*, 1998, **280**, 1763–1766.
- 7. M. Karbowski and R. J. Youle, Cell. Death. Differ., 2003, 10, 870-880.