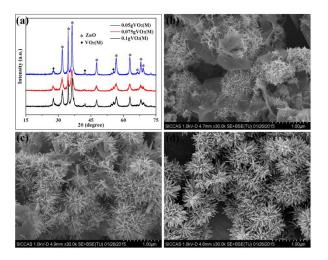
New Journal of Chemistry

Electronic Supplementary Information

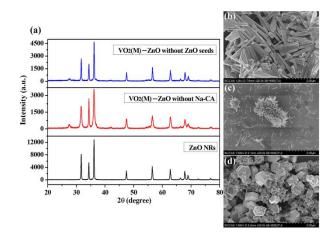
Novel VO₂(M)-ZnO heterostructured dandelions combined thermochromic and photocatalytic properties for application in smart coatings

Wenjing Li^{a,b}, Shidong Ji^{a,*}, Guangyao Sun^{a,b}, Yining Ma^{a,b}, Hehe Guo^{a,b}, and Ping Jin^{a,c,*}

^a State Key Laboratory of High Performance Ceramics and Superfine Microstructure, Shanghai Institute of


Ceramics, Chinese Academy of Sciences, Shanghai 200050, China

^b Graduate University of Chinese Academy of Sciences, Beijing 100049, China


^c National Institute of Advanced Industrial Science and Technology (AIST), Moriyama, Nagoya 463-8560,

Japan

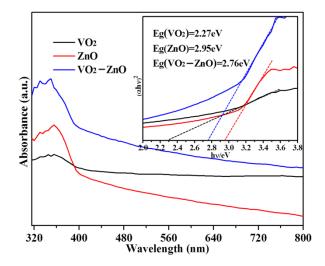

*Author for correspondence. Email: p-jin@mail.sic.ac.cn, sdki@mail.sic.ac.cn.

Fig. S1. (a) XRD patterns of the products with different amount of $VO_2(M)$ NPs, (b-d) the corresponding SEM images of the sample with 0.1, 0.075 and 0.05g $VO_2(M)$ NPs.

Fig. S2. (a) XRD patterns and (b-d) SEM images of the ZnO NRs, VO₂(M)-ZnO without Na-CA, VO₂(M)-ZnO without ZnO seeds.

Fig. S3. UV-vis absorption spectra and the insert was the $(\alpha hv)^2$ -hv relationship of the VO₂ NPs, ZnO NRs and VO₂(M)-ZnO dandelions.