Electronic Supplementary Material (ESI) for New Journal of Chemistry. This journal is © The Royal Society of Chemistry and the Centre National de la Recherche Scientifique 2016

SUPPORTING INFORMATION

Structural Differences Between Sb- and Nb-Doped Tin Oxides and Consequences for Electrical Conductivity

E. Oakton,^a J. Tillier,^b G. Siddiqi,^a Z. Mickovic,^b O. Sereda,^b A. Fedorov,^a and C. Copéret^{a*}

^a ETH Zürich, Department of Chemistry and Applied Biosciences, Vladimir Prelog Weg 2, CH-8093 Zürich, Switzerland. Fax: 41 44
633 1325; Tel: 41 44 633 9394; E-mail: ccoperet@inorg.chem.ethz.ch
^b CSEM SA, XRD Application Lab & Microscopy, Jaquet-Droz 1, CH-2002, Neuchâtel, Switzerland.

Characterisation data

Figure S1. Representative Bright Field TEM images of a) SnO₂, b) SnO₂:Sb and c) SnO₂:Nb before (left) and after (right) calcination

	Z
Figure S2. EDX maps of SnO ₂ :Nb (left) and SnO ₂ :Sb (right) before calcination	2
Figure S3. EDX maps of SnO ₂ :Nb (left) and SnO ₂ :Sb (right) after calcination	2
Figure S4. Representative N ₂ adsorption desorption isotherms of SnO ₂ :Sb	3
Figure S5. XRD powder diffraction patterns of SnO ₂ (green), SnO ₂ :Sb (blue) and SnO ₂ :Nb (black) measured on a glass substrat	te at
room temperature after the HT-XRD measurements	3
Figure S6. XRD powder diffraction patterns of SnO ₂ , SnO ₂ :Sb and SnO ₂ :Nb before calcination (black) and at 500 °C (blue)	4
Figure S7. HT-XRD diffraction patterns of SnO ₂ during heating cycle 1	5
Figure S8. HT-XRD diffraction patterns of SnO ₂ during heating cycle 2	5
Figure S9. HT-XRD diffraction patterns of SnO2:Sb during heating cycle 1	6
Figure S10. HT-XRD diffraction patterns of SnO2:Sb during heating cycle 2	6
Figure S11. HT-XRD diffraction patterns of SnO ₂ :Nb during heating cycle 1	7
Figure S12. HT-XRD diffraction patterns of SnO ₂ :Nb during heating cycle 2	7

Table S1. Elemental analysis data for SnO ₂ :Sb and SnO ₂ :Nb (wt%)	8
Table S2. Surface area and electrical conductivity data of the SnO ₂ :Sb samples	8
Table S3. Surface area and electrical conductivity data of the SnO2:Nb samples with varied Nb content calcined at 500 °C	8
Table S4. Surface area and electrical conductivity data of the 5 mol _M % SnO ₂ :Nb samples with varied calcination temperatures	9

Figure S1. Representative Bright Field TEM images of a) SnO₂, b) SnO₂:Sb and c) SnO₂:Nb before (left) and after (right) calcination

Figure S2. EDX maps of SnO2:Nb (left) and SnO2:Sb (right) before calcination

Figure S3. EDX maps of SnO₂:Nb (left) and SnO₂:Sb (right) after calcination

Figure S4. Representative N2 adsorption desorption isotherms of SnO2:Sb

Figure S5. XRD powder diffraction patterns of SnO_2 (green), SnO_2 :Sb (blue) and SnO_2 :Nb (black) measured on a glass substrate at room temperature after the HT-XRD measurements. The red lines represent the theoretical peak positions of Cassiterite SnO_2 . Major diffraction peaks are indexed (*hkl*) and assigned to cassiterite SnO_2 .

Figure S6. XRD powder diffraction patterns of SnO_2 , SnO_2 :Sb and SnO_2 :Nb before calcination (black) and at 500 °C (blue). Red lines represent the theoretical peak positions of cassiterite SnO_2 . Double line represent peaks due to the Pt heating strip. A small shift in the peaks assigned to the Pt heating strip is observed due to thermal expansion for the diffractograms recorded at 500 °C (blue). Major diffraction peaks are indexed (*hkl*).

Figure S7. HT-XRD diffraction patterns of SnO_2 during heating cycle 1. Peaks due to the Pt heating strip are denoted by a + sign. All others correspond to cassiterite SnO_2 .

Figure S8. HT-XRD diffraction patterns of SnO_2 during heating cycle 2. Peaks due to the Pt heating strip are denoted by a + sign. All other corresponds to cassiterite SnO_2 .

Figure S9. HT-XRD diffraction patterns of SnO_2 :Sb during heating cycle 1. Peaks due to the Pt heating strip are denoted by a + sign. All others correspond to cassiterite SnO_2 .

Figure S10. HT-XRD diffraction patterns of SnO_2 :Sb during heating cycle 2. Peaks due to the Pt heating strip are denoted by a + sign. All others correspond to cassiterite SnO_2 .

.

Figure S11. HT-XRD diffraction patterns of SnO_2 :Nb during heating cycle 1. Peaks due to the Pt heating strip are denoted by a + sign. All others correspond to cassiterite SnO_2 .

Figure S12. HT-XRD diffraction patterns of SnO_2 :Nb during heating cycle 2. Peaks due to the Pt heating strip are denoted by a + sign. All others correspond to cassiterite SnO_2 .

Table S1. Elemental analysis data for SnO₂:Sb and SnO₂:Nb (wt%)

Sample	Sn	Sb	Nb	CI
SnO ₂ :Sb	73.2	1.92	-	0.53
SnO ₂ :Nb	70.5	-	2.97	1.18

Table S2. Surface area and electrical conductivity data of the SnO₂:Sb samples

Sample	Calcination / T °C	S _{BET} / m ² .g ⁻¹	Electrical conductivity / S.cm ⁻¹
SnO ₂ :Sb	500	83	0.02
Commercial SnO ₂ :Sb	-	70-80	0.03

Table S3. Surface area and electrical conductivity data of the SnO₂:Nb samples with varied Nb content calcined at 500 $^{\circ}$ C

Nb content / mol _M %	S _{BET} / m ² .g ⁻¹	Electrical conductivity / S.cm ⁻¹
0	33	10-6
1	28	10-6
2	28	10-6
5	43	10 ⁻⁵
10	55	10-6

Calcination T / °C	S _{BET} / m ² .g ⁻¹	Electrical conductivity / S.cm ⁻¹
-	257	10-7
350	143	10 ⁻⁶
500	92	10 ⁻⁵
650	59	10-5
800	28	10 ⁻⁶

Table S4. Surface area and electrical conductivity data of the 5 mol_M% SnO₂:Nb samples with varied calcination temperatures