Electronic Supplementary Material (ESI) for New Journal of Chemistry. This journal is © The Royal Society of Chemistry and the Centre National de la Recherche Scientifique 2016

Supplementary material for

Three cation-templated Cu(I) self-assemblies: synthesis, structures,

and photocatalytic properties

Man-Man Xu, Yao Li, Lin-Jie Zheng, Yun-Yin Niu* and Hong-Wei Hou*

College of Chemistry and Molecular Engineering, Zhengzhou 450001, P. R. China. Email: niuyy@zzu.edu.cn

Bond	A	Bond		A	Bond	A
			1			
Br1- Cu1	2.3803(10)	Br2-Cu1		2.3483(9)	Br3-Cu1	2.3678(11)
			2			
Cu1-Cu1 ¹	2.648(4)	Cu1-I2		2.600(2)	Cu2-I3	2.7028(16)
$Cu1-Cu2^2$	2.974(3)	Cu1-I3		2.715(2)	Cu2-I3 ¹	2.7028(16)
Cu1-Cu2	2.974(3)	Cu2-Cu1 ¹		2.974(3)	Cu2-I4	2.601(3)
Cu1-I1	2.7122(13)	$Cu2-Cu2^2$		2.756(5)	I1-Cu1 ¹	2.7122(13)
Cu1-I1 ²	2.7122(13)	Cu2-I1		2.714(3)	I3-Cu2 ²	2.7028(16)
			3			
Cu1-S1	2.4212(9)	Cu1-S2		2.3882(9)	Cu1-N1 ²	1.983(3)
Cu1-N23	1.996(3)	S1-C1		1.657(3)	S2-C2	1.659(3)
N1-Cu1 ²	1.983(3)	N1-C1		1.147(4)	N2-Cu1 ⁴	1.996(3)
N2-C2	1.151(4)					
Angle	0	Angle		0	Angle	0
			1			
Br2-Cu1-Br1	123.38(4)	Br2-Cu1-Br3		123.72(4)	Br3-Cu1-Br1	112.65(4)
			2			
Cu1 ¹ -Cu1-Cu2	63.57(5)	I1 ² -Cu1-I1		120.40(8)	I3-Cu1-Cu2 ²	56.51(6)
Cu1 ¹ -Cu1-Cu2 ²	63.57(5)	I1-Cu1-I3		105.34(6)	Cu1-Cu2-Cu1 ¹	52.86(9)
Cu1 ¹ -Cu1-I1 ²	60.78(4)	I1 ² -Cu1-I3		105.34(6)	Cu2 ² -Cu2-Cu1 ¹	62.40(5)
Cu1 ¹ -Cu1-I1	60.78(4)	I2-Cu1-Cu1 ¹		136.94(5)	Cu2 ² -Cu2-Cu1	62.40(5)
Cu1 ¹ -Cu1-I3	111.33(5)	I2-Cu1-Cu2		148.04(6)	I1-Cu2-Cu1 ¹	56.74(6)
Cu2-Cu1-Cu2 ²	55.21(11)	I2-Cu1-Cu2 ²		148.04(6)	I1-Cu2-Cu1	56.74(6)
I1-Cu1-Cu2 ²	104.85(8)	I2-Cu1-I1 ²		107.03(5)	I1-Cu2-Cu2 ²	111.07(6)
I1-Cu1-Cu2	56.78(6)	I2-Cu1-I1		107.03(5)	I31-Cu2-Cu1	102.43(9)

Table S1 Selected bond lengths (Å) and angles (°) for compounds 1-3

I1 ² -Cu1-Cu2	104.86(8)	I2-Cu1-I3	111.73(8)	I3 ¹ -Cu2-Cu1 ¹	56.90(6)		
I1 ² -Cu1-Cu2 ²	56.78(6)	I3-Cu1-Cu2	56.51(6)	I3-Cu2-Cu1 ¹	102.43(9)		
I3-Cu2-Cu1	56.90(6)	I4-Cu2-Cu1 ¹	149.52(7)	Cu1-I1-Cu1 ¹	58.43(7)		
I3-Cu2-Cu2 ²	59.34(5)	I4-Cu2-Cu1	149.52(7)	Cu1-I1-Cu2	66.48(7)		
I3 ¹ -Cu2-Cu2 ²	59.34(5)	I4-Cu2-Cu2 ²	136.92(7)	Cu1 ¹ -I1-Cu2	66.48(7)		
I3-Cu2-I1	105.64(7)	I4-Cu2-I1	112.01(10)	Cu2 ² -I3-Cu1	66.59(7)		
I3 ¹ -Cu2-I1	105.64(7)	I4-Cu2-I3	108.01(7)	Cu2-I3-Cu1	66.59(7)		
I3-Cu2-I3 ¹	117.57(10)	I4-Cu2-I3 ¹	108.01(7)	Cu2 ² -I3-Cu2	61.32(10)		
3							
N1 ² -Cu1-S1	101.73(7)	N2 ³ -Cu1-S1	113.48(8)	C2-S2-Cu1	102.31(10)		
N1 ² -Cu1-S2	113.49(8)	N2 ³ -Cu1-S2	106.25(8)	C1-N1-Cu1 ²	157.8(2)		
$N1^2$ -Cu1 $N2^3$	117.62(10)	C1-S1-Cu1	98.16(10)	C2-N2-Cu1 ⁴	174.2(2)		
N1-C1-S1	179.3(3)	N2-C2-S2	178.0(3)	S2-Cu1-S1	103.53(3)		

 Table S2. Structural parameters for the hydrogen bonds in 1.

Hydrogen Bonds							
DH•••A	d(D-A)	Å	d(H-A) Å		d(D-A) Å	D-H-A/°	
N2H2A…Br1ª	0.86		2.68		3.457(5)	151.3	
N4H4A····Br3 ^b	0.87	2.55		3.346(4)	152.7		
weak interactions							
DH····A	d(H-A) Å	DH····A		d(H-A) Å	DH····A	d(H-A) Å	
N2-H2A····Br1	2.68	N2-H2B…	•Br1	3.03	C13-H13····Br3	2.79	
C9-H9····Br2	2.84	C8-H8B···	•Br3	2.91	C8-H8A····Br1	2.92	
C5-H5···Br1	2.96	C18-H18•	••Br2	2.79	C14-H14Br3	2.99 Å	
N4-H4BBr2	2.97	N4-H4A	.Br3	2.55			

symmetry code ^a1 - x, -1/2 + y, 1/2 - z; ^b2 - x, 1 - y, 1 - z

Table S3

Geometrical Coordinates of optimized complex [MAPB][Cu₄I₈]

С	-1	4.62825800	-4.46872800	-5.03665900
С	-1	4.62818200	4.46877500	-5.03665900
С	-1	4.50048300	-3.29293100	-4.43565900
С	-1	4.50042800	3.29297500	-4.43565800
С	-1	4.35804900	-5.66208900	-4.35435000
С	-1	4.35795300	5.66213100	-4.35434900
С	-1	3.97350900	-5.54008700	-3.02701700

С	-1	3.97341500	5.54012300	-3.02701600	
С	-1	4.03438400	-1.85293000	-2.50393900	
С	-1	4.03435200	1.85296600	-2.50393900	
С	-1	3.83707900	-4.30722200	-2.49208800	
С	-1	3.83700700	4.30725500	-2.49208800	
С	-1	6.10971400	-1.76256000	-1.22576800	
С	-1	6.10968400	1.76263100	-1.22576800	
С	-1	4.76332900	-1.84343200	-1.19015500	
С	-1	4.76329800	1.84348100	-1.19015500	
С	-1	4.07885000	1.85749900	-0.00005400	
С	-1	6.76742900	-1.67203700	-0.00006800	
С	-1	4.07888200	-1.85746200	0.00004600	
С	-1	6.76740100	1.67212000	0.00003200	
С	-1	4.76334200	-1.84343300	1.19013900	
С	-1	4.76331100	1.84348200	1.19013900	
С	-1	6.10972700	-1.76256000	1.22573800	
С	-1	6.10969700	1.76263200	1.22573800	
С	-1	3.83710600	-4.30722200	2.49208100	
С	-1	3.83703300	4.30725500	2.49208100	
С	-1	4.03441000	-1.85292800	2.50393100	
С	-1	4.03437800	1.85296500	2.50393100	
С	-1	3.97354100	-5.54008700	3.02700900	
С	-1	3.97344700	5.54012200	3.02701000	
С	-1	4.35809500	-5.66209000	4.35433800	
С	-1	4.35799900	5.66213100	4.35433800	
С	-1	4.50053100	-3.29293000	4.43564600	
С	-1	4.50047500	3.29297500	4.43564600	
С	-1	4.62831100	-4.46872800	5.03664400	
С	-1	4.62823500	4.46877500	5.03664400	
Cu	-1	-3.77019700	0.00000200	-1.32391300	
Cu	-1	-1.49578100	-1.37468200	-0.00002500	
Cu	-1	-1.49580500	1.37462500	-0.00002500	
Cu	-1	-3.77018300	0.00000200	1.32398700	
Н	0	4.91222100	-4.49873200	-6.08429500	
Н	0	4.91214600	4.49878300	-6.08429500	
Н	0	4.61592100	-6.91661700	-5.91716200	
Н	0	4.61580300	6.91666300	-5.91716100	
Н	0	4.68628100	-2.36241500	-4.95855300	
Н	0	4.68624600	2.36246300	-4.95855200	
Н	0	4.13187200	-7.66223000	-4.46141800	
Н	0	4.13174400	7.66226900	-4.46141800	
Н	0	4.46511800	-1.14096200	-3.20836900	
Н	0	4.46509400	1.14100600	-3.20837200	
Н	0	3.69061900	-6.40572700	-2.43791100	

Н	0	3.69051200	6.40575800	-2.43791100	
Н	0	2.96508700	-1.64121400	-2.38375200	
Н	0	2.96505900	1.64123200	-2.38374800	
Н	0	6.66887700	-1.71994700	-2.15570700	
Н	0	6.66887900	1.72002600	-2.15568500	
Н	0	3.43846300	-4.16279000	-1.49386600	
Н	0	3.43839000	4.16281800	-1.49386700	
Н	0	2.98687600	1.91471600	0.00002800	
Н	0	7.85124900	-1.57242900	-0.00011700	
Н	0	2.98690900	-1.91469600	0.00012200	
Н	0	7.85122300	1.57253000	-0.00002000	
Н	0	3.43853300	-4.16277600	1.49385900	
Н	0	3.43846300	4.16280200	1.49385900	
Н	0	6.66887400	-1.72014400	2.15567300	
Н	0	6.66881300	1.72022600	2.15569600	
Н	0	2.96519400	-1.63952400	2.38376100	
Н	0	2.96516500	1.63954200	2.38376600	
Н	0	3.69092500	-6.40574900	2.43780600	
Н	0	3.69081500	6.40578000	2.43780700	
Н	0	4.46607300	-1.14121800	3.20811800	
Н	0	4.46605900	1.14126200	3.20811600	
Н	0	4.13203500	-7.66224600	4.46137500	
Н	0	4.13190500	7.66228400	4.46137600	
Н	0	4.68718100	-2.36246900	4.95831600	
Н	0	4.68713700	2.36251600	4.95831700	
Н	0	4.61590700	-6.91665400	5.91714400	
Н	0	4.61579200	6.91670100	5.91714400	
Н	0	4.91270000	-4.49871800	6.08416300	
Н	0	4.91262300	4.49876900	6.08416300	
Ι	-1	-5.54520700	-0.00001300	-3.22340300	
Ι	-1	-1.24060100	0.00002400	-2.31142600	
Ι	-1	-4.02287000	-2.35360000	-0.00001100	
Ι	-1	-4.02291000	2.35350000	-0.00001100	
Ι	-1	0.28658200	-3.27853300	-0.00003400	
Ι	-1	0.28652700	3.27850600	-0.00003400	
Ι	-1	-1.24057700	0.00002400	2.31147400	
Ι	-1	-5.54517300	-0.00001300	3.22349700	
Ν	-1	4.46942700	-6.83202700	-4.92326100	
Ν	-1	4.46931100	6.83207100	-4.92326100	
Ν	-1	4.16362700	-3.20821500	-3.16256800	
Ν	-1	4.16357300	3.20825400	-3.16256800	
Ν	-1	4.16366100	-3.20821600	3.16255800	
Ν	-1	4.16360700	3.20825400	3.16255900	
Ν	-1	4.46947900	-6.83202700	4.92324800	

Fig. S1 PXRD patterns for compound 1 and simulated spectra of compound 1 from single crystal data.

Fig. S2 PXRD patterns for compound 2 and simulated spectra of compound 2 from single crystal data.

Fig. S3 PXRD patterns for compound 3 and simulated spectra of compound 3 from single crystal data.

Fig. S4 Thermal gravimetric analysis (TGA) curves for as-synthesized compound 1-3.

Fig. S5 UV-Vis absorption spectra of methylene blue solution in presence of **1-3** for different time periods.

Fig. S6 UV-Vis absorption spectra of methylene blue solution in the trapping experiment of active species during the photocatalytic reaction:(a) 0.1M BQ(a quencher of •O²⁻); (b) 0.1M IPA(a quencher of •OH)