Electronic Supplementary Material (ESI) for New Journal of Chemistry. This journal is © The Royal Society of Chemistry and the Centre National de la Recherche Scientifique 2016

Submitted to New Journal of Chemistry

Electronic Supplementary Information

High thermoelectric performance of In-doped Cu₂SnSe₃ prepared by fast

combustion synthesis

Yuyang Li,^a Guanghua Liu,^{a,*} Jiangtao Li,^{a,*} Kexin Chen,^b Yemao Han,^a Min Zhou,^a Laifeng Li,^a Mingjun Xia,^a Xingxing Jiang,^a Zheshuai Lin^a

a. Key Laboratory of Cryogenics, Technical Institute of Physics and Chemistry, Chinese Academy of Sciences, Beijing 100190, P. R. China.

b. State Key Laboratory of New Ceramics & Fine Processing, School of Materials Science and Engineering, Tsinghua University, Beijing 100084, P. R. China.

Corresponding authos:

Guanghua Liu, E-mail: <u>liugh02@163.com</u>

Jiangtao Li, E-mail: lijiangtao@mail.ipc.ac.cn

Fig.S1 XRD pattern of the monoclinic Cu₂SnSe₃ prepared by combustion synthesis in air.

Fig. S2 Photographs of the $Cu_2Sn_{0.9}In_{0.1}Se_3$ sample prepared by high-pressure combustion synthesis in an Ar atmosphere with a pressure of 2 MPa.

Fig.S3 XRD patterns of the $Cu_2Sn_{1-x}In_xSe_3$ samples after spark plasma sintering: (a) an overview; (b) an enlarged view to clearly show the small peaks. No significant difference was observed in the XRD patterns of the samples just synthesized and after spark plasma sintering.

Fig.S4 Back-scattered electron images and EDS results of the $Cu_2Sn_{1-x}In_xSe_3$ samples: (a) and (b) prepared by high-pressure combustion synthesis, x=0.05, with SnSe as the secondary phase; (c) and (d) prepared by high-pressure combustion synthesis, x=0.20, with a Cu-rich secondary phase; (e) and (f) prepared by high-pressure combustion synthesis followed with spark plasma sintering, x=0.1, with much more grain boundaries compared with the just synthesized samples before spark plasma sintering.

Fig.S5 Lattice thermal conductivities of $Cu_2Sn_{1-x}In_xSe_3$ (x=0.05, 0.10) samples: (a) prepared by onestep HPCS, (b) prepared by HPCS-SPS.

The lattice thermal conductivities are calculated according to the Wiedemann-Franz Law ($\kappa = \kappa_e + \kappa_L = L_0 \sigma T + \kappa_L$), where κ_e is the thermal conductivity contributed by carriers, L_0 is the Lorentz number, σ is the electrical conductivity, and T is the absolute temperature. In our calculation, the Lorentz number of $L_0=2.0\times10^{-8}$ W Ω K⁻² is used according to the report by Shi et al. (X. Shi, L. Xi, J. Fan, W. Zhang and L. Chen, Chemistry of Materials, 2010, 22, 6029-6031.)